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1 Knowledge pattern and innovations

We think of the disciplinary technological knowledge available in the economy as
subdivided into di¤erent disciplinary �elds, or simply �elds, which only partly
correspond to application domains. A �eld identi�es a set of funcional or �phe-
notipic� traits in the broad technology domain. The set of technology �elds
existing at a given date and the relations between them are understood to be
the outcome of the way in which the human society has historically explored
and exploited the set of possibilities o¤ered by the physical world. Technological
determinism is therefore inappropriate, in that there is a social element inherent
to the architecture of technology. Innovations, that is, additions to the stock of
technological knowledge, can be incremental, radical, or network. The scope of
a disciplinary-�eld de�nition is su¢ ciently narrow that radical innovations are
understood as exogenous events a¤ecting the number and quality of technol-
ogy �elds. Network innovations are changes in the matrix describing the active
cross-�eld learning interfaces and the strength of these knowledge connections.
Incremental innovations are those additions to the knowledge stock originating
in a speci�c �eld that do not a¤ect the set of available �elds or the design of
cross �eld interactions.
The average number of incremental innovations per unit of time in a given

�eld depends on two main factors: in the �rst place, the set of innovation
opportunities available in that �eld, in the second place the innovation e¤ort
in the same �eld. In this paper we assume that innovation opportunities are
primarily determined by the progressive local knowledge base. This consists
of the subset of ideas that are known by R&D laboratories currently operat-
ing in the given technology �eld and that are potentially conducive to useful
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recombinations and developments leading to new disciplinary knowledge. Un-
der a recombinant interpretation of knowledge growth (Reiter [27], Weitzman
[35]), the progressive knowledge base can be regarded as the repertoire of re-
combination possibilities from which innovations will originate. So de�ned, the
progressive local knowledge base partly consists of ideas originated from past
innovations in the same technology �eld, but will also partly consist of ideas
originated from past innovations in other �elds and that are made available to
the �eld in question by the knowledge interfaces that are currently active across
technologies. The knowledge pattern is the set of knowledge interfaces that are
active across �elds, together with their degree of activation. More precisely,
the intensity cij of knowledge transfer from �eld j to �eld i is the average fre-
quency with which an innovation in �eld j gives rise to ideas that are relevant
to innovation activity in �eld i. This implies that cij will not fully capture the
occasional transfer of a radically new idea from j to i, unless we have a reliable
way of weighing the importance of ideas. The absence of such reliable weights
is made less dramatic by the fact that a radical innovation is normally followed
by a swarm of incremental innovations, so that the frequency cij of systematic
knowledge transfer will at least partly re�ect the importance of ideas.
The way in which the structure of the knowledge pattern evolves through

time is shaped by radical and network innovations. This paper proceeds on
the bold hypothesis that the organization of a knowledge pattern in a given
historical period, say the last decades of the 20th century, re�ects not only
the key technological interfaces that are dominant in the period, for instance
those concerning the information and communication technologies (ICT). We
expect that the organization of these interfaces will partly re�ect more general
principles, bearing upon the way in which the accumulation of new ideas over
time a¤ects the complexity of innovation activity.
To clarify this point, it is best to think of an idea as a speci�c con�guration

of a set of basic codi�able knowledge components. Ideas discovered in di¤erent
�elds may share some of their basic components and for this reason R&D in
one �eld may be relevant to R&D in others. Our premise is that exploiting the
�relevance�of a knowledge input to the discovery of a knowledge output requires
that the con�guration of the latter conforms to a number of constraints imposed
by the con�guration of the former. The reason is that the relative �tness of
ideas in performance space is strongly a¤ected by relations of interdependence
or complementarity and this makes the problem of �nding the best con�guration
of a given set of knowledge components di¢ cult. In other words, technological
�tness landscapes are rugged [16]. In the landscape metaphor, the output of
incremental R&D is an expansion in the known surface of the given landscape
At a given date, the dimension of the landscape depends on the number of basic
knowledge components available, which we assume a strictly increasing function
of the number of known �elds. The dimension of disciplinary R&D landscapes
tends to increase through time together with the number of �elds, as a result of
radical innovations.
The ruggedness of the �tness landscape facing a R&D laboratory operating

in a given �eld i is produced by the complementarities between the compo-
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nents which de�ne the knowledge space of �eld i.(For the sake of simplicity, we
assume that R&D laboratories operating in the same �eld face the same knowl-
edge space). On such �complicated landscapes boundedly rational R&D actors
have strong incentives to adopt local search euristics, which are able to climb
only local optima. The waiting time to attain globally optimal solutions grows
exponentially with landscape dimension, so that global serach euristics will not
pay in the arena of competition. The ruggedness of the landscape facing R&D
in �eld i is determined, for a given dimension, by the interdependencies that are
speci�c to the technology �eld in question.
Ruggedness does not fully de�ne the complicatedness of R&D in one �eld.

The reason is that, the shape of the �tness landscape and possibly its dimension,
changes through time as a result of deformations induced by discoveries in R&D
laboratories operating in other �elds (there is strategic interdependence between
R&D choices). In other words, R&D landscapes of di¤erent disciplinary �elds
are more or less tightly coupled1 . Taken together, ruggedness and degree of
coupling are the sources of the �complicatedness�facing R&D activity.
Evolvability in the technological knowledge domain requires, much like in

other domains, that the complicatedness of interactions does not grow in propo-
tion with the inevitable growth in the scale of the system (as measured for in-
stance by the number of technology �elds). As we shall see, there is convincing
evidence that this is achieved through a selection for modularity in the orga-
nization of the learning interfaces between technology �elds. Since the notion
of modularity has recently acquired a variety of meanings in the literature, it
is worth spelling out our use of the term: it is possible to partition the set of
technology �elds into subsets called modules, such that on average, the intensity
of the knowledge links a �eld sends to or receives from the �elds participating
in the same module is higher than the corresponding average intensity of the
links between a �eld in the module and a �eld belonging in a di¤erent mod-
ule. The lower average intensity of between module links is not necessarily
consistent with the stronger requirement that every such link is �weak�, so that
between module links are negligible over appropriate time scales (Simon�s [31]
near-decomposability). It is however consistent with the notion that between
module communication takes place in aggregate form (hierarchic aggregability).
Hierarchic aggregability in the organization of knowledge spaces is su¢ cient in
order that the waiting time to �nd a globally optimal solution on a landscape
is a polynomial rather than exponential function of the landscape dimension
([36]). As system size increases, hierarchic modular structures develop, but the
knowledge pattern so originated may not exhibit the more demanding organiza-
tional structure of a near decomposable system a la Simon.([33] , [31] and [32]).
As will be argued, the near-decomposability condition that the size of every
inter-module relation is �weak�(has a lower order of magnitude), compared to

1S. Page [23] associates �di¢ culty�of search with the fact that �tness lanscapes are rugged,
so that di¢ culty increases with ruggedness, and associates �complexity�of search with the fact
that �tness landscapes are coupled in a way that a search step in one induces a deformation
in the others. In Page�s de�nition, complexity is the a measure of how tight is the coupling
between the landscapes. In the sequel we shall not exploit Page�s distinction.
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the size of every intra-module relation, appears to be violated by the structure of
an empirical knowledge pattern. We conjecture that the modular architectures
of a knowledge pattern are better described by the conditions of hierarchic ag-
gregabilty that give rise to the design rules of compositional evolution [36], and
that the tendency of knowledge-pattern complicatedness to increase with scale
is kept under control through the development of �exible modular architectures
of this type.
Still, Simon�s idea of identifying functional or structural subset of a net-

work, by separating �rst-order from lower-order magnitude links proves to be
euristically insightful in the analysis of an empirical knowledge pattern. As will
be shown, proceeding in this way enebles the identi�cation of functional and
structural units that de�ne the strongest systematic and self sustaining mecha-
nisms of knowledge transfer and accumulation within the network. These �core�
structures are de�ned by the connectivity property that every node (technology
�eld) in the core is connected to every other node in the same core by a circular
self-sustaining information �ow. The core structure achieving the highest rate
of knowledge transfer is dominant. In the approximation based on �rst-order
magnitude links the dominant core structure will be typically a strict subset of
the network. Other, non dominant cores will also coexist with it. We expect
that in an empirical knowledge pattern the dominant core identi�ed through
1st order size connections corresponds to the functional module of technology
�elds and knowledge interfaces that together identify the dominant technology
paradigm of the period. As will turn out, the prediction is fully corroborated in
the empirical analysis to follow.
The relevance of this approach in the analysis of knowledge transfer between

technology �elds is further motivated in a companion paper [3] which o¤ers a
theoretical model of the way a given knowledge pattern a¤ects the distribution of
incremantal innovations. In that paper, the qualitative model predictions were
then matched with facts, showing that changes in the structure of the empirical
knowledge pattern obtainable from patent-citation data could provide a clue to
explaining changes in the empirical distribution of innovations. The architecture
of the empirical knowledge pattern per se was largely unexplored, partly as a
result of the relatively high level of aggregation at which the empirical analysis
was carried out (technology �elds were identi�ed with two digits technological
subcategories as de�ned in [11]). This paper extends the analysis of [3] in two
directions. In the �rst place, the architecture of the empirical knowledge pattern
based on USPTO patent citation data is investigated at the much �ner level of
resolution of 3-digits technology classes. Based on this �ne grained analysis,
the issues concerning the relevant notion of modularity, the core structures and
their functionality with respect to patent distribution, can be addressed more
rigorously. In the second place, the changes through time in the cross-�eld
architecture of knowledge transfer are investigated at the same �ner level of
resolution. The envisaged structural change in the period 1975-1999 o¤ers a few
guide lines of interpretation consistent with the idea that the information and
communication technologies (ICT), although representing the core of knowledge
creation throughout the period, only in the second half became fully integrated
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with the other sectors. The suggested guidelines are broadly consistent with
general ideas on structural change suggested in the evolutionary applied and
theoretical literature on knowledge creation.
The paper is organized as follows. In the next section we introduce our formal

description of a knowlegde pattern and the precise notions of modularity, near-
decomposability, and core structures that will be used in the rest of the paper.
Section 3 relates our reconstruction of an empirical knowledge pattern from
the NBER �les of patent-citation data to the growing literature on knowledge
spillovers based on patent citations. Section 4 exploits the notions of modularity
and ACS to analyze the architecture of the re-constructed empirical knowledge
pattern in the periods 1975-1986 and 1987-1999. Section 5 concludes.

2 Knowledge pattern, modularity and autocat-
alytic sets

2.1 The connection matrix C

We consider an economy with a �nite set S = f1; :::; ng of known technology
�elds. A �eld j is here understood as a (possibly in�nite) set Tj of potential
con�gurations, or designs. The technological state of the economy is de�ned
by fG(S;L;C); Ag. Ai i = 1; :::; n, is the number of useful ideas cumulatively
produced by R&D in �eld i. G(S;L;C) is a weighted directed graph, with a set
S of nodes, that are here interpreted as technology �elds, a set L of directed
knowledge links between these nodes, and a connection matrix C of weights,
or intensity coe¢ cients, attached to the links in question. cij is the strength
of the directed link from j to i. It is a measure of the extent to which ideas
developed in sector j are relevant to R&D in sector i, in the sense that Aj
expands the knowledge base of the latter.2 We can safely assume that some of
the knowledge produced by past innovations in one �eld is always relevant to
R&D activity in the same �eld, that is, cii > 0, i = 1; :::; n. By de�nition, C
satis�es the condition: cij = 0 if and only if the directed link (j ! i) 62 L. This
justi�es the de�nition:

De�nition 1 G(S;L) is the unweighted directed graph associated with the weighted
directed graph G(S;L;C), or, more sinthetically, with C.

The discovery which brings j in the set S of known technologies, brings also
the knowledge stock Aj to its lower bound Aj = 1; after that, Aj grows as a
result of the cumulative �ow of incremental-innovation arrivals in the technology
�eld j. Let ai = Ai=

P
j Aj . [3] builds a dynamics of the column vector a of share

distributions ai; i = 1; :::; n, driven by the �ows of knowledge inputs across �elds.
The �ow of useful innovations in sector i depends on two factors, the e¤ective

2 In our interpretation, cij = 1 if every idea developed in �eld j is a relevant knowledge
input to R&D activity aimed at developing a new idea in �eld i. Since ideas are non rival, it
may well be the case that cij > 1.
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R&D e¤ort in this �eld, Qi=Ai, and the repertoire of available ideas that are the
�building blocks�of R&D in �eld i; this repertoire corresponds to the knowledge
�ows

P
j cijAj received by i through the active interfaces described by C. The

stock Ai, j = 1; :::n, evolves according to the di¤erential equation:

_Ai = �
Qi
Ai

X
j
cijAj (1)

where � is a uniform productivity3 parameter. It can be redily veri�ed that
in the long-run condition such that the e¤ective R&D e¤ort Qi=Ai is uniform
across �elds, every right eigenvector of C is a dynamic equilibrium of the dif-
ferential equation above. Under the hypothesis that relative R&D e¤ort in �eld
i, Qi=

P
iQi, increases (decreases) depending on the extent in which innova-

tion opportunities in this �eld,
P

j cijAj is higher (lower) than average, it is
proved4 that the dynamics of a converges to a �xed point a� which is the right
eigenvector of C associated with the Perron-Frobenius eigenvalue ��. (Using
a genericity argument, �� is assumed to have multiplicity 1). The suggested
interpretation is that �� is the highest long-term sustainable rate at which the
connection matrix C makes knowledge inputs avilable to the technology �elds
which enter the non negative (right) eigenvector of C associated to ��. The
suggested interpretation is that the positive entries in this eigenvector de�ne
the �elds participating in the dominant technology paradigm. For the sake of
completeness, the model dynamics is reported in appendix A.

2.2 Modularity of C

In our matrix C, the degree of activation cij of the knowledge transfer from
�eld j to �eld i is a measure of the probability that an idea discovered in �eld
j is relevant to the discovery of a new idea in �eld i, if exploited by R&D
in this �eld. We may note, in passing, that the same idea discovered in one
�eld, may be relevant to many other �elds; hence, there is no implication that
the elements in the columns of C add up to 1. For the sake of simplicity, we
think of relevance as a binary variable which may take value 0, not relevant,
or 1, relevant. Under the above interpretation, the exploitation by �eld i of a
relevant input idea discovered in �eld j requires meeting the constraints carried
by such input. A relatively high (low) value of cij is also an indication that the
landscape of �eld i is tightly (weakly) coupled to that of �eld j; the present
directions of useful discovery in the former are strongly (weakly) conditioned by
the direction in which the con�guration of useful ideas has been developing in
the latter.
Mutually high values of cij and cji signal a coevolution of the directions of

discovery in �elds i and j. The constraints imposed by such a coevolution bring

3The simplifying assumption follows from the fact that there is no attempt at weighing the
quality of a knowledge transfer, but at measuring its frequency together with its source and
destination.

4The proof is given in [3] for low dimensional n. By way of simulations, the result is
conjectured to hold for any given n.
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in a trade-o¤. The price to pay for the oppotunity of a faster progress through
the formation of compatible knowledge standards in �elds i and j, and the
opening of active interfaces between them, is a reduced capability to move away
from the direction speci�ed by those standards. This creates the danger of a
technological lock in, because trajectories traced by local search procedures are
path dependent. Moreover, if global search criteria should occasionally bene�t
from a lucky stroke and envisage new and potentially useful search directions,
R&D in these directions can not avail itself of the vast array of knowledge inputs
and complementary ideas that are maide available by the cross-�eld interfaces
corresponding to the prevailing knowledge pattern. For this reason, the idea
occasionally discovered through a �rst research step in a radically new direc-
tion is likely to perform poorly as compared to the best-practice disciplinary
knowledge. The transition to a di¤erent dominant pattern may prove di¢ cult.
It is worth stressing that under our interpretation, the search �complicat-

edness� faced by R&D in �eld i is not linearly additive in the parameters cij
composing the ith row of C . The reason is that the constraints imposed by the
exploitation of knowledge spillovers from a given �eld h conform to the set of
dominant designs prevailing in h. Exploitation of spillovers from a larger num-
ber of diverse �elds requires compliance to a wider set of qualitatively di¤erent
constraints. The complexity of the search space facing R&D in �eld i comes
to depend not only on the total sum

P
j cij , but, more importantly, on the

distribution
h

cijP
j cij

; i = 1; :::; n
i
and on the technological diversity between the

�elds from which �eld i draws its knowledge inputs. Ceteris paribus, R&D re-
ceiving its knowledge inputs from a smaller number of qualitatively more similar
technology �elds is expected to face a less complicated search space.
The observation above identi�es a strong incentive for �eld i to concentrate

the incoming knowledge links of total intensity
P

j cij across a restricted number
of technologically similar source �elds. In other words, we expect a selection
for modularity in the structure of C. Intuitively, the set of n �elds can be
partioned into m < n disjoint groups, such that , on average, and in ways that
will be speci�ed below, the within group links are stronger than the between
group links. It is also worth observing that the argument can be replicated at
di¤erent hierachic levels; but to the extent that there is qualitative variation
in the nature of technological constraints, activities and functions at di¤erent
levels of the hierarchy, there is no direct implication that the organization of
knowledge patterns is necessarily self-similar across modules and at every scale
of resolution.

2.3 Modularity and dynamics: near-decomposition, ag-
gregation and core structures

The above intuitive and quite genaral idea of modularity of the connection
matrix C admits a quantitative expression, based on recent contributions in
network theory and applications. Suppose that the set N = f1; :::; ng of tech-
nology �elds is partitioned into m disjoint subsets, or groups, so that N =
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N1
S
N2
S
:::
S
Nm, where Nhis the set of �elds belonging to group h. The to-

tal intensity of an outword link from group h directed to itself or to other grpups
is âh =

P
i

P
j cij ; j 2 Nh; i = 1; :::; n. The corresponding total intensity of an

inword link to gruop h from itself or from other groups is �ah =
P

j

P
i cij ; i 2

Nh; j = 1; :::; n. If the total intensity of links in C is T =
P

i

P
j cij ; i; j =

1; :::; n, then the average relative frequency with which an outword link in C
originates from, and arrives to, group h is êh = âh

T and �eh = �ah
T , respectively.

The modularity measure Qh of the links from and to gruop h in the context of
the given network C, is then expressed by the extent in which the frequency
of within-group links exceeds the frequency which would be expected from the
hypothesis of a random wiring.

Qh =

24X
i2Nh

X
j2Nh

cij

35� êh�eh (2)

The modularity of C according to the partition fN1; :::; Nmgis then expressed by
the sum Q =

P
hQhand the appropriateness of two alternative partitions of N

is evaluated by choosing the partition yielding a higher value of Q. In this spirit,
the modularity of C is de�ned by selecting the Q-maximizing partition ([21]).
Since the Q modularity of the null partition fNg is zero, the Q modularity of
C takes values in the interval [0; 1].
The situation is illustrated by the following example of a connection matrix

showing the mutual links between n = 8 �elds. Symbols c of di¤erent size
represent links of di¤erent order of magnitude. The set of �elds f1; :::; 8g can be
partitioned into two modules Na = f1; :::; 4g and Nb = f5; :::; 8g, such that the
strength of the links between Na and Nb is at least one order of magnitude.lower
than the strength of the within module links. Each module Na and Nb can be
further partitioned into two sub-modules Na1; Na2 and Nb1; Nb2, with the same
property that the strength of the links between sub-modules is at least one order
of magnitude lower than the strength of the links within sub-modules.266666666664

C C c c c c c c

C C c c c c c c

c c C C c c c c

c c C C c c c c

c c c c C C c c

c c c c C C c c

c c c c c c C C

c c c c c c C C

377777777775
The Q-modularity of the above connection matrix C is clearly maximized by

the partition fNa1; Na2; Nb1; Nb2g of N . Long ago Simon and Ando observed
that if a square non negative matrix like C in the example describes the equa-
tions of motion of a (locally) linear dinamical system of n variables (X1; :::; Xn)
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of the form5
_Xt = CXt (3)

and if the ratio
c

C
is su¢ ciently close to zero, the linear operator C is decomposable into the form

C = C� + "D

where C� is block diagonal, with the diagonal operators C�a1; C
�
a2; C

�
b1; C

�
b2 acting

on the components of Xt corresponding to the partition fNa1; Na2; Nb1; Nb2g,
respectively. Simon and Ando provided the conditions for which the time scale
of the dinamical system is approximately decomposable into a �short-run�t < T0,
a �medium run�T0 < t < T1, and a �long run�t > T1. During the short run, the
dynamical behavior is dominated by the diagonal block operators acting on the
relevant components of xt, that is, it is almost completely determined by the
within partition relations. During this interval the dinamical system is nearly
decomposable, but is not aggregable, because the within-partition components
of Xt, namely Xa1;t; Xa2;t; Xb1;t; Xb2;t have not yet completed their convergence
to the dominant eigenvectors a�a1; a

�
a2; a

�
b1; a

�
b2 of the diagonal block operators.

This convergence marks the inception of the medium run. During this interval
the within partition dynamics approximated by C� still dominates, so the system
is still decomposable, but to the extent that the within partition distributions
are closely approximated by a�a1; a

�
a2; a

�
b1; a

�
b2, the system is also aggregable. In

the long run, the between partition relations become relevant and for this reason
C� does not o¤er a good approximation of the dynamics any longer. During
this interval the changes in Xt induced by the between partition relations are
weighted by the equilibria of the within-partition distributions. For this reason
the system is still aggregable, even though it is no longer decomposable.
The argument above shows that the conditions for the decomposition and

aggregation of variables acted upon by a linear operator do not in general over-
lap, and have to be clearly distinguished. To clarify this point, which plays an
important role in the sequel, it is worth considering an example concerning the
dynamics induced by 3 on the share distribution variables:

xit =
XitPn
i=1Xit

_xi =
nX
j=1

cijxj � xi
nX

j;k=1

ckjxj (4)

In this example the operator C lends itself to a form of aggregation, even though
the conditions for decomposability fail.

C = C� + "D =

2664
c�11 c�12 0 0
c�21 0 0 c�24
c�31 0 c�33 0
0 0 0 c�44

3775+ "D
5 [33] refers to the corresponding 1st order di¤erence equation.
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Here D and C� are n� n non negative matrices, n = 4 and " is �su¢ ciently
small�.The short run dynamics of the relative share distributions of (x1;t; ::; x4;t)
converges to the share distribution of the right eigenvector of C� associated to
its dominant eigenvalue ��. the aggregation referred to above is induced by
the dominant eigenvector properties of C�. For the sake of later reference we
introduce the following de�nitions and remark.

De�nition 2 For the graph G(S;L) associated to a connection matrix C, a
autocatalytic set (ACS) is a subgraph of G(S;L) such that each vertex in the
subgraph has at least one incoming link from some vertex of the subgraph (Jain
and Krishna [14]). Notice that our assumption cii > 0, i = 1; :::; n, implies
that G(S;L) has n trivial ACSs. The dominant ACS of G(S;L) is its largest
subgraph with the property that the associated connection matrix Ca satis�es
��(C) = ��(Ca).

De�nition 3 For the dominant eigenvector a� of the connection matrix C in
the weighted directed graph G(S;L;C), consider the subset Sa � S of the vertices
corresponding to the positive components of a�, together with the subset La � L
of the links between them. G(Sa; La) is the subgraph corresponding to a� of the
unweighted directed graph G(S;L) associated to G(S;L;C).

Remark 4 G(Sa; La) is the dominant ACS of G(S;L).

With the tools above we can now look at the graph G(S�; L�) induced by
C�. G(S�; L�) is itself a ACS, because node 4 sends a link to itself, but provided
that c44 is su¢ ciently small, node 4 does not belong to the dominant ACS of
G(S�; L�), which consists of the nodes 1, 2, 3 and the links between them. The
reason is that node 4 does not receive links from the others; as a result, to the
extent that c44 is strictly lower than the dominant eigenvalue of C�, the fourth
component in the dominant eigenvector of C� is zero.
In the dominant ACS of G(S�; L�), and in every ACS more generally, we

distinguish a �core�and a �periphery�. The core subgraph of the ACS, which in
our example is formed by vertices 1 and 2, and by the links between them, has
the de�ning property that starting from any vertex of the core, any other vertex
of the autocatalytic set can be reached following a sequence of directed links.
This de�ning property of the core is labelled closed path connectivity. Vertices
in the autocatalytic set that do not belong to its core, belong to its periphery.
In our example the periphery of G(S�; L�) consists of vertex 3, together with
the link from vertex 3 to itself.
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The form of aggregation enabled by the dominant eigenvector propereties
of C�is now revealed by the fact that the relative size (x1=x2) of the variables
1 and 2 in the core of the dominant ACS is independent of the measure of
connections cij outside the core. In this sense, and in spite of the fact that
the system is not decomposable (in Simon�s sense), the variables x1; x2 exert an
aggregate in�uence on the short-run convergence of variables outside the core.
Moreover, the aggregation dominating the short-run equilibria will be also, if
only approximately, felt in the long run, because " is small.
The core of the dominant ACS of a knowledge pattern is the centre of the

strongest self-sustaining mechanisms of knowledge creation and transmission
within that pattern. In a relevant sense, the links connecting the core to the
other �elds in the dominant ACS disseminate building blocks ([13]) that are
the aggregate outcome of the relations within the core. Mathemetically, this
corresponds ton the fact that the Perron-Frobenius eigenvalue of the dominant
ACS is a¤ected by any quantitative change of a connection coe¢ cient within
the core, independently of the wiring and intensity of the links from the core to
the periphery. Euristically, this form of aggregation re�ects the combinatorial
view of knowledge creation adopted in this paper. A stronger link cij signals
the increased capacity of the target �eld j to creatively recombine knowledge

11



from the source �eld i with building blocks directly or indirectly received from
other �elds. Such building blocks are of course the outcome of previous cre-
ative recombinations. The closed path connectivity of the core is crucial, in
this respect, in that it signals that the mechanisms in question are self sus-
taining. The Perron-Frobenius eigenvalue provides the aggregate measure of
self-sustainingness.
The only reason to avoid the tighter coupling of the �elds in a knowledge

pattern through pervasive strong links is to avoid the corresponding growth in
complexity carried by the need to set the technology standards. in one �eld in
tune with those that are simultaneously evolving in other �elds. The setting in
tune will be easier, if the �rst order-size links that give rise to the closed path
connectivity within C� are relatively few in number. The point here is that
the coordination between technology �elds is more complicated if the relations
between them are not strictly hierarchical (one -way), but contemplate a multi-
plicity of feed-back loops. such loops are characterisctic of the relations within
the core, which are circular, with a multiplicity in the measure of closed path
connectivity, which tends to grow with the number of �rst order links within C.
We conjecture that the relatively low dimension of the (�rst-order) dominant

core facilitates the formation of well de�ned standards and smooth learning
interfaces within the core. The incentives for a low-dimensional dominant core
will be strongest during the early phase of design-standard formation within the
core, because in this phase the process of knowledge creation is more turbulent
([1], [4]). The di¤usion of the aggregate knowledge produced by the core to
the periphery of the ACS is made less complex by the fact that the relations
between the core and the periphery are hierarchical. To this extent, we expect
that the ratio between the size of core and periphery is lower during the early
turbulent phase of design standard formation.

3 Reconstructing knowledge spillovers from patent-
citation data: a brief overview (missing)

4 The pattern of knowledge �ows and innova-
tion dynamics: 1975-1999

The data source for our exercise is the NBER Patent-Citations data �le, as
made available in Ja¤e and Trajtenberg [15]. The main data set PAT63_99
contains all utility patents6 granted by the U.S. Patent and Trademark O¢ ce
(PTO) between January 1, 1963 and December 30, 1999. Among the variables
that the PTO originally assigns to each patent, most relevant for us, in addition

6Utility patents constitute the overwhelming majority of patents, which include, in ad-
dition, design, reissue and plant patents. Cfr. Hall, Ja¤e and Trajtenberg [11, p. 407, n.
4].
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to the grant year, is the main U.S. patent class.7 There were 417 patent classes
in the classi�cation in use in 1999. The �original�variables assigned by the PTO
to the various patents are enriched by the authors of the dataset with a number
of �constructed variables�. In particular, the 417 classes are aggregated by the
authors into 36 technological subcategories and these further aggregated into
6 categories (�Chemical�, �Computers & Communications�, �Drugs & Medical�,
�Electrical & Electronic�, �Mechanical�, and �Others�). The data set PAT63_99
can be pro�tably matched with a second data set, namely, CITE75_99, which
contains all citations made to patents in PAT63_99 by patents issued between
January 1, 1975 and December 30, 1999.
The �rst aim of our exercise is to obtain from the citations data just de-

scribed, a computationally viable description of the knowledge �ows between
technology �elds, and of the changes thereof. In the companion paper [3] the
analysis was carried out resorting to a simpli�ed description of technology �elds
according to their partition into 36 subcategories. This paper extends the analy-
sis to the technological classi�cation according to the 418 3-digit classes. To
evaluate the intensity of knowledge spillovers across technology �elds, we stud-
ied how far patenting in a class xy in a time interval [t; t + z] was followed
by citations to xy by patents issued in every other class in the time interval
[t+s; t+z]. In this way, for each class xy, we obtained a 418-dimensional vector
of citations to xy. The corresponding vector of spillover intensity from xy to
the other classes was obtained by dividing the citations vector by the number of
patents issued in xy in the period [t; t+ z]. Proceeding in this way for each xy
in the set of 418 classes, we arrived at a matrix of spillover intensity which is the
empirical analogue of the matrix C in our model. To detect structural change, if
any, in the pattern of knowledge spillovers in the period under study, we divided
the latter into two sub-periods and obtained a corresponding analogue of matrix
C for each sub-period.
The actual procedure followed was complicated by two types of considera-

tions that have to do with those characteristics of the available data set, that
are most relevant to our exercise.
The �rst relevant characteristic is that the number of citations in a �nite time

interval is a¤ected by truncation e¤ects related to backward and forward citation
lags (Hall, Ja¤e and Trajtenberg [11, pp. 421-424]). This imposed a choice of
the subperiods in a way that comparisons between them were least a¤ected by
the unavoidable distortions introduced by truncation e¤ects. In particular, the
parameter s was held constant between the subperiods (s = 12) and di¤erences
in z were negligible (z = 23 in the �rst subperiod, z = 24, in the second).
The corresponding choices for t were t = 1963 and t = 1975, respectively.
For the sake of later reference, the intervals [t + s; t + z] = [1975 � 1986] and

7The reason for the quali�cation �main� is that each patent is assigned by the PTO to a
3-digit patent class and to a subclass, but also to any number of �subsidiary�classes and sub-
classes that seem appropriate. Moreover, the system is continuously updated with new classes
being added and others being reclassi�ed or discarded. In this case, the PTO retroactively
assigns patents to patent classes, according to the most recent clasi�cation system. Cfr. Hall,
Ja¤e and Trajtenberg [11, p. 415.]
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[t + s; t + z] = [1987 � 1999] are referred to below as �rst window (W1) and
second window (W2), respectively.
The second relevant characteristic is that there is a sharp rising trend, largely

common across categories, in the mean number of citations, per patent. This
trend re�ects, to a large extent, an increasing propensity to cite by PTO of-
�cers, as a result of the easier access to larger data sources brought about by
computerisation of the PTO during the 1980�s. Although the rising citations
trend may not be entirely a pure artifact of the changed PTO practices, in the
absence of a better alternative, the construction of the connection matrix for
the second window was carried out using discounted citations data. In partic-
ular, the number of citations made by patents issued in class xy in the second
window, was discounted by the xy growth rate of citations-made per patent
between the �rst and second window.
There is a third potentially distorting characteristic in the data set, namely,

the rising trend in the yearly number of patents issued since 1983. This feature
is at least partly taken care of by our procedure, since according to our estimate
of the connection matrix, the number of citations made by class xy patents,
issued in window [t+ s; t+ z], to class hk patents issued in [t; t+ z], is divided
by the number of hk patents granted in [t; t+ z].

4.1 Modularity of empirical connection matrices

Fig. ?? and ??, report a visual representation of the connection matrices C(W1)
and C(W2) for the two windows. The colours identify di¤erent orders of mag-
nitude of the connection coe¢ cients.
The bright colour blocks and stripes depicted in Fig. 1 and 2 is partly re-

vealing. For instance, the red main diagonal results from the fact every class
tends to be more tightly connected with itself than with other classes; the same
should apply to �well chosen groups�of technology classes. The problem revealed
by Fig. 1 and 2 is that the ordering of rows and columns is not particularly well
chosen; it simply re�ects the NBER original ordering of 3-digit classes, which is
strongly in�uenced by temporal sequence in which the classes were �rst intro-
duced. As a result, these �gures do not o¤er an adequate visual representation
of the quasi-modular structureof the two matrices. A far better candidate in this
respect appears to be an endogenous permutation of the ordering that groups
together of the classes showing a similar structural relationship with the other
classes. To this end, we generated for each period a 32 groups partition of the
418 classes, and a corresponding permutation of C, using the algorithm CON-
COR. The e¤ects on the visual representation of connection strengths and their
quasi-modular organization is quite sharp.
Table ?? and ?? specify the class composition of the CONCOR groups for

the windows W1 and W2. The colours emphasise the correspondence between
the endogenously generated groups and the NBER technological categories. For
ease of later reference, and for reasons that will be clari�ed in the sequel, group
28 in Table ?? and group 1 in Table ?? are referred to as the �Core-Groups�for
the periods W1 and W2, respectively.
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Figure 1: Average citation �ows of 1 patent issued in a column technology-class,
by patents issued in the row technology-class: 1975-1986. Representation based the
NBER ordering of 418 3-digit classes. The colour sequence blue, light-blue, light green,
yellow, red identi�es progressively higher orders of magnitude of link intensity.
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Figure 2: Average citation �ows of 1 patent issued in a column technology-class,
by patents issued in the row technology-class: 1987-1999. Representation based on
the NBER ordering of 418 3-digit classes. Correspondence between colour and link
intensity as speci�ed in 1.
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Figure 3: Average citation �ows of 1 patent issued in a column technology class,
by patents issued in the row technology-class: 1975-1986. Representation based the
permutation of C(W1) generated by the algorithm CONCOR. Colours identify link
intensity as in Fig. 1 .
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Figure 4: Average citation �ows of 1 patent issued in a column technology class,
by patents issued in the row technology-class: 1975-1986. Representation based the
permutation of C(W1) generated by the algorithm CONCOR. Colours identify link
intensity as in Fig. 1
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Figure 5: Partition of the set of 3-digits classes into 32 structurally �similar�
groups performed by the algorithm CONCOR on the connection matrix C(W1):
groups 1-13. Blue = Computer and communic., Green = Mechanical, Pink =
Chemical, Red = Drugs and medical, Yellow = Electrical and electronics, White
= Others.
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Figure 6: Partition of the set of 3-digits classes into 32 structurally �similar�
groups performed by the algorithm CONCOR on the connection matrix C(W1):
groups 14-32. Blue = Computer and communic., Green = Mechanical, Pink =
Chemical, Red = Drugs and medical, Yellow = Electrical and electronics, White
= Others.
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Figure 7: Partition of the set of 3-digits classes into 32 structurally �similar�
groups performed by the algorithm CONCOR on the connection matrix C(W2):
groups 1-17. Colours identify NBER 1-digit Categories, as in 5 and 6.
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Figure 8: Partition of the set of 3-digits classes into 32 structurally �similar�
groups performed by the algorithm CONCOR on the connection matrix C(W2):
groups 18-32. Colours identify NBER 1-digit Categories, as in 5.
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Newman and Girivan [21] propose that the appropriateness of any two
community-structure partitions of a given network are evaluated using their
proposed measure of modularity Q. This suggests that the the 32-blocks en-
dogenous partition generated by CONCOR identi�es a community structure
moderately better than the NBER technological partition in 36 subcategories8 .
In period W1 the Newman-Girivan Q measure of modularity ([20], [18]) mod-
erately increases for the former (Q = 670135), with respect to the latter (Q =
647874). The corresponding increase of the Q measure is lower for period
W2.(Q = 614495 against Q = 610734). The �rst point to observe is that,
irrespective of the community structure adopted, the aggregate Q measure of
modularity declines from the period 1975-1986 to the period 1987-1999.
The group-contributions to modularity, weighted and unweighted by the

number of group members, is reported in Table 9. What is most relevant in
this table (recall that the group composition changes from W1 to W2) is that
in both periods the maximum per-class contribution to modularity comes from
the blue coloured �Core Group�comprising (almost9) exclusively classes in the
Computer and communications technological category.
Correspondingly, in the list of the contributions to modularity induced by

the exogenous partition of classes into 36 subcategories (Table 10) the blue
coloured Computer and communications subcategories rank very high10 .
The analysis above, suggests that the technology classes in the Computer

and communication technological subcategories, and even more the ICT (Infor-
mation and communication technology) classes belonging to the �Core Group�
are not only most active in R&D, but receive and send a much higher than
average share of their citations from and to classes belonging to the same sub-
category or group. Apparently this conclusion marks a sharp contrast with the
�nding in [11], based on the Her�ndahl concentration of the class distributions
of patent citations made (input) and received (output). Hall, Ja¤e and Trajten-
berg [11] �nd that, on average, and throughout the period 1975-1999, patents
in the Computer and communications category, have the lowest concentration
indexes of the input and output patent citations by class. On this account, they
argue that patents in Computer and communications are most �original�because
they creatively exploit knowledge from a wider set of technology classes, and
produce also the most �general�knowledge, because knowledge created by them
disseminates to a wider set of classes According to [11],the highest generality
score makes the label �general purpose technologies�most appropriate for the
classes belonging to the Computer and communications category.
The solution to the apparent paradox is that the modularity measures con-

sidered in this paper are based on the grouping together of classes into �similar�
technological communities. The fact that the ICT classes exhibit a relatively
high modularity measure, based on this partition, does not contradict the fur-

8 It may be worth observing that this partition gives rise to a class ordering which is not
the NBER �historical�ordering embedded in Fig. 1.

9The quali�cation in parenthesis refers to the period 1987-1999.
10The correspondence between colour and technological category is reported in previous

tables.

23



Figure 9: Group contributions to modularity, unweighted and weighted by group
size, based on the two di¤erent community structures identi�ed by CONCOR
for the periods 1975-1986 and 1987-1999.
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Figure 10: Group contributions to modularity according to the NBER partition
of 418 3-digit classses into 36 2-digits subcategories.
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ther fact that they also rank lowest in the Her�ndhal concentration index based
on the class distribution (of inward and outward citations). It simply means
that a relatively large share in the �wider sets of technology classes� sending
knowledge connections to and receiving knowledge connections from the ICT
classes, belong in the same technology group or subcategory. The quali�ca-
tion by Hall, Ja¤e and Trajtenberg [11] of the ICT classes as �general purpose
technologies� is therefore inappropriate, if it is simply based on their �nding
concerning the Her�ndahl index. To corroborate this conclusion, we must spel
the doubt that the apparent clash between our modularity measures and the
cited results of [11] may have to with the fact that the former, unlike the latter,
are based on the connection matrices C(W1) and C(W2) in which each column
distribution of the citations receaved by one class is normalized by the number of
patents issued in that class in the corresponding period. To this end, we report
below the Her�ndahl concentration indexes concerning the distribution of the
absolute number of inward and outward citations, by group and subcategory,
for the periods W1 (Table ??) and W2 (Table ??). The �ndings corroborate
our modularity result, con�rming that the Computer and communications sub-
category, and most prominently, the �Core Group� rank relatively high in the
ordering of concentration indexes.
Our �ndings do not necessarily contradict the idea that the new knowledge

embodied in ICT innovations was �general purpose�and, as such, could be ex-
ploited in a wide set of diverse technology classes. The corroboration of this
idea can not simply rest on concentration indexes of citation distributions by
class. As will be shown, it requires a much more elaborate analysis of some
structural properties of the connection matrices, focused on the notions of near-
decomposability, and autocatalytic sets.
It is to this analysis that we now turn.

4.2 Near decomposability and the Core properties of ICT

The partitions of the connection matrices C(W1) and C(W2) into blocks per-
formed by CONCOR (see Fig.s 5 - 8) share the property that, in both W1 and
W2, the technological community, or group, exhibiting the highest Q modular-
ity measure is composed (almost) exclusively by ICT classes. It is now time to
justify the claim that each of the two communities thus identi�ed represents the
�Core group�(CG) in the partition for the period W1 and W2, respectively, and
to discuss the relevance of this claim.
The �rst step in the argument is to see to what extent each CG represents

a module in the sense of Simon [32], that is, in the sense that the size of the
connection links between the classes within the group are at least one order of
magnitude larger than those sent to, or receaved from, the classes that do not
belong in the group. To this end, we produced two dichotomized connection
matrices CA(W1), CA(W2) with the de�ning property that all connection links
of the original matrix C(Wi); i = 1; 2, that are larger than or equal to 0.1 are
set equal to 1 and all the others are set to 0. The exercise shows that in both
W1 and W2, the CG is connected by �rst-order-magnitude links with classes
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Figure 11: Normalized Her�ndahl concentration indexes concerning the dis-
tributions of patent citations made (input distribution) and received (output
distribution) by each group in the 32 and 36 group partitions for the period
1975-1986.
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Figure 12: Normalized Her�ndal concentration indexes concerning the distrib-
utions of patent citations made (input) and received (output) by each group in
the 32 and 36 partitions for the period 1987-1999.
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that do not belong in the group; hence it does not meet the strong requirements
imposed by Simon�s de�nition of a module.

4.2.1 The dominant autocatalytic set of CA

Simon�s idea of separating �rst-oder-magnitude from lower-order magnitude
links brings to the fore interesting functional and structural properties of the
connection matrix C. It turns out that the dominant ACS of the dichotomized
connection matrix CA(W1) has a Core consisting of 8 classes, all of which are in
the Computer and communication category, and all belonging to the CONCOR
community CG(W1), which drwas its name from this �nding (see 13). They
are:
705 Data processing: �nancial, business practice, management, or cost/price

determination
707 Data processing: database and �le management or data structures
709 Electrical computers and digital processing systems: multicomputer data

transferring
710 Electrical computers and digital data processing systems: input/output
711 Electrical computers and digital processing systems: memory
712 Electrical computers and digital processing systems: processing archi-

tectures and instruction processing (e.g., processors)
713 Electrical computers and digital processing systems: support
714 Error detection/correction and fault detection/recovery
Three out of the �ve classes in CG(W1), which do not belong to the core of

the dominant ACS(CA(W1)), belong to its periphery. They are:
365 Static information storage and retrieval
370 Multiplex communications
700 Data processing: generic control systems or speci�c applications.
Finally, the remaining two classes of CG(W1), namely, class 706 (arti�cial

intelligence) and 395, do not belong to the dominant ACS(CA(W1)), but send
�rst-order magnitude links to members of this set.
The set of nodes in the periphery of the dominant ACS(CA(W1)) consists

of 37 classes, 17 in the Computer & communications category, 15 in Electrical
& electronics, 3 in Others and 2 in Mechanical. Figure ?? o¤ers a visual repre-
sentation of the link architecture of the dominant ACS(CA(W1)). The 8 blue
nodes of the core send �rst order magnitude links not only to nodes allined on a
one-way path, but also to 8 other loops of strongly connected components that
are core structures in smaller ACS embedded in the periphery of the dominant
ACS(CA(W1)) (4 components with 2 members, 2 with 4 members, 2 with 5
members).
The number of classes in the dominant ACS(CA(W2)) is not much larger

than the corresponding number in the dominant ACS(CA(W1)): 52 in the for-
mer against 45 in the latter. It is the relative composition of the dominant ACS
between core and periphery to change from period W1 to W2. The Core of
the dominant ACS(CA(W2)) contains 42 member classes, of which 28 belong to
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Figure 13: Core and Periphery of the Autocatalytic sets of the connection ma-
trices C(W1) and C(W2). Blue = Computer and Communications, Yellow =
Electrical and electronics, Green = Mechanical.
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Figure 14: Dominant ACS of the dichotomized matrix CA(W1). The blue and
red nodes correspond to core and periphery nodes, respectively.
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Figure 15: Dominant ACS of the dichotomized matrix CA(W2). The blue and
red nodes correspond to core and periphery nodes, respectively.

Computer & communications, 8 to Mechanical and 6 to Electrical & electron-
ics. The sharp absolute and relative increase in the number of core members
in the second period is illustrated in 13. The increase in core size and its more
di¤erentiated composition by technological category signals a higher degree of
integration of the ITC dominant paradigm with the rest of the economy. A
much larger number of classes belonging to more heterogeneous technologies, is
participating beside the core ITC classes in the �rst-order size self-sustaining
mechanisms of knowledge creation and transmission in period W2 as compared
toW1. Figure ?? shows the changed structure of the dominant ACS (CA(W2)).
Most loops of strong components previously embedded in the periphery of the
dominant ACS have now been included in the new expanded core. There are
only 10 nodes in the periphery, all belonging to the categories Mechanical and
Electrical & electronics; of them, 4 form a strongly connected component.
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Figure 16: Class composition of the 3 autocatalytic sets of the matrix CA(W1)
associated with the �rst 3 highest positive eigenvalues. Autocatalytic sets em-
bedded in dom ACS have not been considered. Classes with the asterisc are in
the core of the ACS.

4.3 Non dominant Autocatalytic sets of CA
The directed networks corresponding to the dichotomized matrices CA(W1)
and CA(W2) embed two other prominent, but much smaller autocatalytic sets,
beside the dominant one. Their class composition in the �rst period is shown
in Figure 16, where they are labelled ACS2 and ACS3, respectively. They
are associated to positive eigenvalues of the matrix CA(W1), namely �2 =
4:29 and �3 = 2:88. The functional signi�cance of the ACS concept in the
context of patent analysis is con�rmed by the fact that, as was the case for
the dominant ACS, both ACS2(W1) and ACS3(W1) correspond to functional
groups of classes that lend themselves to a clear interpretation.
In particular, ACS2(W1) comprises 14 classes that bear a close relation with

the category Chemicals. With the possible sole exception of class 418 (Stock
material or miscellaneous articles), the 10 classes in the core of ACS2(W1)
either belong in this category, or identify processes that use plastics as their
material support.
ACS3(W1) is considerably smaller and refers to more specialized classes of

activity related to surgery, in the category Drugs & medicals. It may be worth
observing that ACS3(W1) and the dominant ACS(CA(W1)) have one node of
their respective peripheries in common, namely the node corresponding to class
73 (Measuring and testing) in the category Electrical & electronics. Thus, not
even the concept of ACS identi�es functional modules that fully correspond to
Simon�s de�nition of a module.
The two autocatalytic sets ACS2 and ACS3 are also clearly detectable in
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the second period, that is, in the network corresponding to the dichotomized
matrix CA(W2). The expansion of �rst order magnitude links in the second
period is not circumscribed to the dominant ACS, but is a more general trend.
ACS2 expands from 14 to 20 members and marks a pronounced change in its
composition. 4 classes exit and 10 new classes enter the ACS2, mostly belonging
in the categories Chemicals and Electrical & electronics. The outcome is also a
change in the composition of the core, which in the second period consists of 9
classes, all of which in Chemicals, and only 4 of them already part of the core
in the �rst period.
The expansion of ACS3 from the �rst period to the second is much sharper

than for the other autocatalytic sets. The number of members increases from 5
to 24 nodes, with new classes entering the core and the periphery, while no exits
occur. The expanded core now contains 6 classes, again highly specialized and
all related to the activity of surgery or fabrication of prosthesis. In spite of the
highly specialized core, all technological categories except Computer & commu-
nications are represented in this autocatalytic set in period W2. The member
nodes include classes in the semiconductor technology, in molecular biology, in
chemistery and in mechanical processes using plastics as material support. It is
also remarkable that the ACS2(CA(W2)) shares with the ACS3(CA(W2)) 10
members of its perifery (belonging in the categories Chemicals, Electr. & elec-
tronics, Mechanicals and �Others�) and that both the ACS2(CA(W2)) and the
ACS3(CA(W2)) share 4 nodes with the dominant ACS(CA(W2)), all of which
in Electrical & electronics. This �nding strongly reinforces the conclusion that
autocatalytic sets are functional structures that do not correspond to modules
in Simon�s sense.
As it turns out, the approximation based on �rst-order-magnitude links,

standardized to weight size 1, detects structural properties of the empirical
connection matrix C(W ) that do not lose their signi�cance after all links of
every magnitude have been re-introduced and all links bear their proper weight.
From the weighted directed graph G(S;L;C), corresponding to the empirical
connection matrix C, we extract the subgraph G(Si; Li; Ci) where Si is the set
of nodes (classes) in the ACSi of the dichotomized matrix CA de�ned above (the
dominant ACS is ACS1), Li � L is the subset of links connecting the nodes in
Si, and Ci is the connection matrix specifying the intensity of the links in Li,
as reported in C. Our model suggests that the relative degree of participation
of a subset Si of nodes (classes) to the long-term self sustaining mechanisms of
knowledge creation and transmission within C can be evaluated by comparing
the Perron-Frobenius eigenvalue of the connection matrix Ci of the subgraph
G(Si; Li; Ci) with the dominant eigenvalue of C. The results of this analysis,
carried out for the periods W1 and W2 are as follows.

��(C) ��(C1) ��(C2) ��(C3)
W1 3:5825 3:5603 2:5081 2:8827
W2 6:6492 6:6442 3:3182 3:4045
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Figure 17: Class composition of the 3 autocatalytic sets of the matrix CA(W2)
associated with the �rst 3 highest positive eigenvalues. Autocatalytic sets em-
bedded in dom ACS have not been considered. Classes with the asterisc are in
the core of the ACS.
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5 Conclusions: ICT �elds, general purpose tech-
nology, modularity, and ACS

Since our narrative is focused on the role played by the ICT �elds during the
period of analysis, it is worth summarising our �ndings in this perspective, and
bring them within a coherent framework.
A �rst order of considerations refers to structural features of the knowl-

edge transfer between technology �elds that are common to the periods under
consideration, 1975-1986 and 1987-1999.
If the organization of the learning interfaces connecting technology �elds is

regarded through the lenses of the Newman Girivan [21] Q measure of mod-
ularity, and if connection links of every size are considered, the organization
concerning the ICT �elds reveals unquestionably a relatively high degree of
modularity. The statement must be interpreted in the sense that this technol-
ogy group shows a maximum, or at least relatively high, propensity to be more
tightly connected with itself than with other groups. As already observed, this
result is con�rmed by the �nding that the distributions by technology �group�
(CONCOR generated group, or NBER subcategory) of inward and outward
patent citations shows a relatively high Her�ndahl concentration index for the
ITC group compared to most of the others. In the light of these �ndings the
frequent statement that the ICT represent the prominent general purpose tech-
nologies of late 20th century needs quali�cation and re-interpretation.
Our suggested interpretation is based on a separation of knowledge links

according to their order of magnitude. By focusing on su¢ ciently strong links,
and abstarcting temporarily from the others, we show that in both periods 1975-
1986 and 1987-1999 a subset of ICT �elds is a crucial part of a core sub-network
connected by a circular path of strong links that together build a self-sustaining
mechanism of knowledge transfer. The core structure pertaining to the critical
ICT �elds is not unique in the network of �rst order magnitude links and in
period 1975-1986 it is not even the largest core structure with respect to the
number of classes in it. What is special about it is: (i) It obtains, among all
such structures, the highest rate of knowledge transfer, as evaluated through a
dominant eigenvalue measure. (ii) It reaches out, through �rst order links, the
by far largest periphery of technology classes, which together with the source
core build up the dominant ACS(CA) of the strong-links network. We empha-
size that the closed path connectivity of the core implies that the systematic and
persistent �ow of knowledge transfer from the core of the dominant ACS(CA) to
the periphery and to the network at large, through second order links, contains
a form of knowledge aggregation in the sense that the core �elds participate in
that transfer in relatively �xed proportions. In our view, these functional char-
acteristics, as opposed to measures based on Her�ndahl concentration indexes,
or Q modularity, justufy the label of �general purpose�for the ICT in the period
75-99.
When we ask what technologies may be or may not be regarded as general

purpose in a given historical period, we are posing questions concerning the ab-
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solute pervasiveness of such technologies. The judgement cannot abstract from
the absolute overall intensity of the links connecting the technology in question
to the others. This is precisely what occurs when we measure, through the Q
modularity, how community oriented is the organisation of a connection struc-
ture,independently of its overall intensity, or how concentrated is a distribution
of connections (by using Her�ndahl indexes).
A second order of considerations refers to the detection and euristic inter-

pretation of structural change, if any, between the �rst and the second period.
Also in this respect our narrative is focused on the core ICT �elds.
On average, between 1975-86 and 1987-99 we register a sharp and general

increase in the intensity of knowledge transfer across �elds, in spite of the fact
that: (i) the number of citations in the second period was discounted in the at-
tept at eliminating distortions induced by the changed USPTO citing practices;
(ii) the connection matrices C(W1) and C(W2) report the number of citations
per unit of patent issued in the period. To some extent, the implied higher
information �ows were more di¤used and less community oriented in the second
period, as is suggested by a mild decline of the Q modularity measures from
W1 to W2: In this respect the ICT group, no matter if identi�ed by the NBER
classi�cation criteria or through �structural similarity�criteria, simply follows
the general trend.
As before, a di¤erent picture is obtained by focusing on �rst-order magnitude

links. The number of nodes (classes) in the dominant ACS of the dichotomized
connection matrix CA increases from 45 in period W1 to 52 in period W2, a
fact which is in line with the general trend referred to above. What is striking
is the change from W1 to W2 in the composition of the dominant ACS(CA)
between core and periphery. In 1975-99 the 8 core classes all belong to the
NBER category Computer & communications, and more speci�cally to Electri-
cal computers and digital processing systems, Data processing, and Error detec-
tion/correction. In 1987-99 the core contains 42 nodes, 28 of which in Computer
and communications, 8 in Mechanicals and 6 in Electrical and electronics. The
ratio between the size of core and perifery is reversed: #Core

#Periphery is 0:216 in
W1 and 4:2 in W2:We suggest that the increase in the relative size of the core,
compared to periphery, and its more di¤erentiated composition by technological
category, signals a higher degree of integration of the ITC dominant paradigm
with the rest of the economy. This �nding is prima facie consistent with a evo-
lutionary interpretation of design standard formation. During the early phase
of design standard formation technological change is more turbulent and there
is a marked trade o¤ between the knowledge gains that can be obtained through
tighter links with R&D in other �elds, on the one hand, and the increased com-
plexity of R&D, on the other. An excess of connectedness makes �nding a ��t�
solution or design on a ltechnological andscape more di¢ cult, because landscape
are constantly deforming as a result of the fact that convergence to a stable tech-
nology standard is not yet complete and the solutions provisionally identi�ed in
di¤erent �elds may not be compatible. The nature of the trade o¤ is drastically
altered in favour of connectedness, after a set of mutually compatible standards
has emerged. Now the relation between connectedness and landscape deforma-
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tion is much waker. Correspondingly, the incentives for a relatively large set of
strong mutual interactions, as we observe in the core of the dominant ACS(CA)
is stronger.

6 Appendix A: a model of incremental innova-
tions

Aggregate R&D e¤ort � =
P

j Qj is not explained by the model. It is assumed
to grow at the exogenous exponential rate 
.The �ow of useful innovations in
sector i depends on two factors, the e¤ective R&D e¤ort in this �eld, Qi=Ai,
and the repertoire of available ideas that are the �building blocks�of R&D in
�eld i; this repertoire corresponds to the knowledge �ows

P
j cijAj received by

i through the active interfaces described by C. The stock Ai, j = 1; :::n, evolves
according to the di¤erential equation:

_Ai = �
Qi
Ai

X
j

cijAj = �Qipi(A) (5)

where � is a parameter, pi(A) is the function
P

j cijAj=Ai with 0 � cij . Some
points concerning expression (5) are worth stressing. The innovation �ow de-
pends on the e¤ective R&D e¤ort Qi=Ai , rather than the absolute e¤ort Qi, to
allow for the fact that a larger stock Ai makes innovation in i more complex,
hence more R&D intensive. For the sake of simplicity, the expression abstracts
from technological obsolescence, which can be introduced at a minor cost. cij is
the generic element of the n�n matrix C. Replacing every cij > 0 in C with 1,
and leaving every zero element of C unchanged, we obtain the adjacency matrix
~C of the directed graph G(S;L).
The R&D e¤ort of sector i, namely Qi,changes according to the dynamic

equation:

_Qi =

24�
0@pi � 1

n

X
j

pj

1A+ 

35Qi (6)

Let ai = Ai=
P

j Aj , and ri = Qi=Ai. Then

pi(A) =

P
j cijAj

Ai
=

P
j cijaj

ai
= fi(a) (7)

where a = (a1; :::; an)
0 and f(a) : K ! Rn+. Notice that a is so de�ned that

it belongs to the n � 1 dimensional simplex K in Rn, that is, 0 � ai � 1;P
j aj = 1. Indeed, since Ai � 1, ai will approach zero if and only if

P
j Aj
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goes to in�nity with Ai �nite. From (5) and (6) we obtain:

_ai = �

24riX
j

cijaj � ai
X
h

rh
X
j

chjaj

35 (8)

_ri = ri

"

 + (�� �ri) fi(a)�

�

n

X
h

fh(a)

#
(9)

The following notation is now introduced: for every row n-dimensional vector
of real variables (x1; x2; :::; xn), the corresponding label x is the column vector
(x1; x2; :::; xn)

0 and X is the diagonal matrix with the elements x1; x2; :::; xn
on its main diagonal; moreover, z is the n dimensional unit column-vector
(1; 1; :::; 1)0. Now for the column vectors a = (a1; :::; an)

0, r = (r1; :::; rn)
0 we

generate the corresponding diagonal matrices A, R. From the equations above
we obtain the system of non-linear di¤erential equations:

_a = � [RCa� ar0Ca] (10)

_r = R
h
(�I � �R) f(a) + z

�

 � �

n
z0f(a)

�i
(11)

Our primary goal in this section is to study the system dynamics and to
relate it to the topological structure of the matrix C.

Proposition 5 Let a� be the right eigenvector of C associated with the Perron-
Frobenius eigenvalue ��. Using a genericity argument, we can safely assume
that �� has multiplicity 1 (Hirsch and Smale [12, pp. 153-157]). (a�; r�) is
a stationary state of equations (10)-(11), where r� is de�ned as follows. (i)
If a� > 0, r� = (
=���)z. (ii) If a� � 0, let n1 < n be the number of strictly
positive components of a�,and n2 = n�n1.Since in this case C is reducible,there
exists a permutation matrix P such that:

PCP 0 =

�
C11 C12
0 C22

�
Here C11 is a [n1 � n1] non negative matrix, C22 is a [n2 � n2] non negative
matrix, and ��(C) = ��(C11) > ��(C22).On the simplifying assumption that
the right eigenvector of C22 associated with �

�(C22) is strictly positive, we can
write:

r�i =
�fi(a

�) + 
 � (�=n) (n1�� + n2��(C22))
fi(a�)�

(12)

where, fi(a�) = ��, if a�i > 0, and fi(a�) = ��(C22) if a�i = 0. If the Perron-
Frobenius eigenvector of C22 is not strictly positive, we can de�ne r�i by iterating
the argument above.

Conjecture 6 For generic initial conditions (a; r) such that a is in the relative
interior of K, and r > 0, the dynamics of (10)-(11) converges to the �xed point
(a�; r�) de�ned by the proposition above. On the generic assumption that �� has
multiplicity 1, (a�; r�) is the unique stable attractor of equations (10)-(11).
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The above conjecture is abundantly illustrated in the companion paper [3],
where (a�; r�) is proved to be locally stable in low dimensional cases and is
conjectured to preserve its local-stability properties in higher dimensions.

References

[1] Anderson P., Thusman M. (1990): "Technological Discontinuities and
Dominant Designs: A Cyclical Model of technological Change", Admin-
istartive Science Quarterly, vol. 35, pp. 604-633.

[2] Caminati M. (2006): �Knowledge Growth, Complexity, and Returns to
R&D�, in Journal of Evolutionary Economics, vol. 16, n. 3, pp. 207-229.

[3] Caminati M., Sordi S., Stabile A. (2006): "Patterns of Discovery",
Quaderni del Dipartimento di Economia Politica, n. , Università di Siena.

[4] Chesbrough H. (2003): "Towards a Dynamics of Modularity. A Cyclical
Model of Technical Advance", in [26], pp. 174-198.

[5] Cowan R. W. (2004): �Network Models of Innovation and Knowl-
edge Di¤usion�, MERIT Research Memorandum RM2004-016,
www.merit.unimaas.nl.

[6] Crutch�eld P. J. (2001): "When Evolution is Revolution- Origins of Inno-
vation", in [7].

[7] Crutch�eld P. J. and Schuster P. (eds.) (2001): Evolutionary Dynamics-
Exploring the Interplay of Selection, Neutrality, Accident and Function,
Santa Fe Institute Series in the Sciences of Complexity, New York, Oxford
University Press.

[8] Danon L, Diaz-Guilera A., Duch J. and Arenas A. (2005): "Compar-
ing Community Structure Identi�cation", Journal of Statistical Mechanics,
P09008.

[9] David P. (1990): �The Dynamo and the Computer: An Historical Perspec-
tive on the modern Productivity Paradox�, American Economic Review,
Papers and Proceedings, 80, 355-361.

[10] Devine W. (1983): �From Shafts to Wires: Historical Perspective on Elec-
tri�cation�, The Journal of Economic History, XLIII, 347-372.

[11] Hall B. H., Ja¤e A. B. and Trajtenberg M. (2002): �The NBER Patent-
Citations Data File: Lessons, Insights and Methodological Tools�, in Ja¤e
and Trajtenberg [15].

[12] Hirsch M. W. and Smale S. (1974): Di¤erential Equations, Dynamical Sys-
tems, and Linear Algebra, New York, Academic Press.

40



[13] Holland J. H. (1998): Emergence: From Chaos to Order, Reading, Addison
Wesley.

[14] Jain S. and Krishna S. (2003): �Graph Theory and the Evolution of Auto-
catalytic Networks�, in Bornholdt S. and Schuster H. G. (eds.), Handbook
of Graphs and Networks, Weinheim, GE, WILEY-VCH, pp. 355-395.

[15] Ja¤e A. B. and Trajtenberg M. (eds.) (2002): Patents, Citations & Inno-
vations, a Window on the Knowledge Economy, Cambridge, MA, The MIT
Press.

[16] Kau¤man S. (1993): The Origins of Order, New York, Oxford University
Press.

[17] Litterer J. A. (ed.)(1969): Organizations: Systems, Control and Adapta-
tion, 2, New York, J. Wiley.

[18] Mu¤ S., Rao F. and Ca�isch A. (2005): "Local Modularity Measure of
Network Clusterization", Physical Review E, 72, 056107.

[19] Mokyr J. (1990): The Lever of Riches. Technological Creativity and Eco-
nomic Progress, New York, Oxford University Press.

[20] Newman M. E. J. (2004): " Analysis of Weighted Networks", Physical
Review E, 70, 056131.

[21] Newman M. E. J. and Girivan M. (2004): "Finding and Evaluating Com-
munity Structure in Networks", Physical Review E, 69, 026113.

[22] Olson G. M., Malone T. W., and Smith J. B. (eds.) (2002): Coordination
Theory and Collaboration Technology, Mahwah, NJ, LEA Publishers

[23] Page E. S. (1998): "Uncertainty, Di¢ culty, and Complexity", Mimeo.

[24] Patee H. (ed.): Hierarchy Theory, New York, Braziller

[25] Pavitt K. (1998): �Technologies, Products and Organization in the Innovat-
ing Firm: What Adam Smith Tells Us and Schumpeter Doesn�t�, Industrial
and Corporate Change, 7, 433-452.

[26] Prencipe A, Davies A. and Hobday M. (2003): The Business of System
Integration, New York, Oxford University Press.

[27] Reiter S. (1992): Knowledge, Discovery and Growth. Discussion Paper
#1011, Northwestern University. Revised version in [22]

[28] Rosenberg N. (1998): �Chemical Engineering as a General Purpose Tech-
nology�in Helpman E. (ed.): General Purpose Technologies and Economic
Growth, Cambridge, MA, MIT Press, 167-192.

[29] Samuelson L. (2005): �Economic Theory and Experimental Economics�,
Journal of Economic Literature, XLIII, 65-107.

41



[30] Schmookler J. (1966): Invention and Economic Growth, Cambridge, MA,
Harvard University Press.

[31] Simon H. A. (1962): �The Architecture of Complexity�, Proceedings of the
American Philosophical Society, 106, 467-482; reprint in [17], pp. 98-114.

[32] Simon H. A. (1973): �The Organization of Complex Systems�, in [24],
1-27."

[33] Simon H. A. and Ando A. (1961): "Aggregation of Variables in Dynamic
Systems", Econometrica, 29, pp. 111-138.

[34] Sra¤a P. (1960): Production of Commodities by Means of Commodities,
Prelude to a Critique of Economic Theory, Cambridge, UK, Cambridge
University Press.

[35] Weitzman M. L. (1998): �Recombinant Growth�, Quarterly Journal of
Economics, 113, 331-360.

[36] Watson R. A. (2006): Compositional Evolution. The Impact of Sex, Symbio-
sis, and Modularity on the Gradualist Framework of Evolution, Cambridge,
MA, MIT Press.

42


