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1 Knowledge pattern and innovations

We think of the disciplinary technological knowledge available in the economy as
subdivided into different disciplinary fields, or simply fields, which only partly
correspond to application domains. A field identifies a set of funcional or ’phe-
notipic’ traits in the broad technology domain. The set of technology fields
existing at a given date and the relations between them are understood to be
the outcome of the way in which the human society has historically explored
and exploited the set of possibilities offered by the physical world. Technological
determinism is therefore inappropriate, in that there is a social element inherent
to the architecture of technology. Innovations, that is, additions to the stock of
technological knowledge, can be incremental, radical, or network. The scope of
a disciplinary-field definition is sufficiently narrow that radical innovations are
understood as exogenous events affecting the number and quality of technol-
ogy fields. Network innovations are changes in the matrix describing the active
cross-field learning interfaces and the strength of these knowledge connections.
Incremental innovations are those additions to the knowledge stock originating
in a specific field that do not affect the set of available fields or the design of
cross field interactions.

The average number of incremental innovations per unit of time in a given
field depends on two main factors: in the first place, the set of innovation
opportunities available in that field, in the second place the innovation effort
in the same field. In this paper we assume that innovation opportunities are
primarily determined by the progressive local knowledge base. This consists
of the subset of ideas that are known by R&D laboratories currently operat-
ing in the given technology field and that are potentially conducive to useful



recombinations and developments leading to new disciplinary knowledge. Un-
der a recombinant interpretation of knowledge growth (Reiter [27], Weitzman
[35]), the progressive knowledge base can be regarded as the repertoire of re-
combination possibilities from which innovations will originate. So defined, the
progressive local knowledge base partly consists of ideas originated from past
innovations in the same technology field, but will also partly consist of ideas
originated from past innovations in other fields and that are made available to
the field in question by the knowledge interfaces that are currently active across
technologies. The knowledge pattern is the set of knowledge interfaces that are
active across fields, together with their degree of activation. More precisely,
the intensity c;; of knowledge transfer from field j to field ¢ is the average fre-
quency with which an innovation in field j gives rise to ideas that are relevant
to innovation activity in field ¢. This implies that c;; will not fully capture the
occasional transfer of a radically new idea from j to ¢, unless we have a reliable
way of weighing the importance of ideas. The absence of such reliable weights
is made less dramatic by the fact that a radical innovation is normally followed
by a swarm of incremental innovations, so that the frequency c;; of systematic
knowledge transfer will at least partly reflect the importance of ideas.

The way in which the structure of the knowledge pattern evolves through
time is shaped by radical and network innovations. This paper proceeds on
the bold hypothesis that the organization of a knowledge pattern in a given
historical period, say the last decades of the 20th century, reflects not only
the key technological interfaces that are dominant in the period, for instance
those concerning the information and communication technologies (ICT). We
expect that the organization of these interfaces will partly reflect more general
principles, bearing upon the way in which the accumulation of new ideas over
time affects the complexity of innovation activity.

To clarify this point, it is best to think of an idea as a specific configuration
of a set of basic codifiable knowledge components. Ideas discovered in different
fields may share some of their basic components and for this reason R&D in
one field may be relevant to R&D in others. Our premise is that exploiting the
'relevance’ of a knowledge input to the discovery of a knowledge output requires
that the configuration of the latter conforms to a number of constraints imposed
by the configuration of the former. The reason is that the relative fitness of
ideas in performance space is strongly affected by relations of interdependence
or complementarity and this makes the problem of finding the best configuration
of a given set of knowledge components difficult. In other words, technological
fitness landscapes are rugged [16]. In the landscape metaphor, the output of
incremental R&D is an expansion in the known surface of the given landscape
At a given date, the dimension of the landscape depends on the number of basic
knowledge components available, which we assume a strictly increasing function
of the number of known fields. The dimension of disciplinary R&D landscapes
tends to increase through time together with the number of fields, as a result of
radical innovations.

The ruggedness of the fitness landscape facing a R&D laboratory operating
in a given field ¢ is produced by the complementarities between the compo-



nents which define the knowledge space of field i.(For the sake of simplicity, we
assume that R&D laboratories operating in the same field face the same knowl-
edge space). On such 'complicated landscapes boundedly rational R&D actors
have strong incentives to adopt local search euristics, which are able to climb
only local optima. The waiting time to attain globally optimal solutions grows
exponentially with landscape dimension, so that global serach euristics will not
pay in the arena of competition. The ruggedness of the landscape facing R&D
in field ¢ is determined, for a given dimension, by the interdependencies that are
specific to the technology field in question.

Ruggedness does not fully define the complicatedness of R&D in one field.
The reason is that, the shape of the fitness landscape and possibly its dimension,
changes through time as a result of deformations induced by discoveries in R&D
laboratories operating in other fields (there is strategic interdependence between
R&D choices). In other words, R&D landscapes of different disciplinary fields
are more or less tightly coupled!. Taken together, ruggedness and degree of
coupling are the sources of the 'complicatedness’ facing R&D activity.

Evolvability in the technological knowledge domain requires, much like in
other domains, that the complicatedness of interactions does not grow in propo-
tion with the inevitable growth in the scale of the system (as measured for in-
stance by the number of technology fields). As we shall see, there is convincing
evidence that this is achieved through a selection for modularity in the orga-
nization of the learning interfaces between technology fields. Since the notion
of modularity has recently acquired a variety of meanings in the literature, it
is worth spelling out our use of the term: it is possible to partition the set of
technology fields into subsets called modules, such that on average, the intensity
of the knowledge links a field sends to or receives from the fields participating
in the same module is higher than the corresponding average intensity of the
links between a field in the module and a field belonging in a different mod-
ule. The lower average intensity of between module links is not necessarily
consistent with the stronger requirement that every such link is 'weak’, so that
between module links are negligible over appropriate time scales (Simon’s [31]
near-decomposability). It is however consistent with the notion that between
module communication takes place in aggregate form (hierarchic aggregability).
Hierarchic aggregability in the organization of knowledge spaces is sufficient in
order that the waiting time to find a globally optimal solution on a landscape
is a polynomial rather than exponential function of the landscape dimension
([36]). As system size increases, hierarchic modular structures develop, but the
knowledge pattern so originated may not exhibit the more demanding organiza-
tional structure of a near decomposable system a la Simon.([33] , [31] and [32]).
As will be argued, the near-decomposability condition that the size of every
inter-module relation is 'weak’ (has a lower order of magnitude), compared to

1S. Page [23] associates *difficulty’ of search with the fact that fitness lanscapes are rugged,
so that difficulty increases with ruggedness, and associates *complezity’ of search with the fact
that fitness landscapes are coupled in a way that a search step in one induces a deformation
in the others. In Page’s definition, complexity is the a measure of how tight is the coupling
between the landscapes. In the sequel we shall not exploit Page’s distinction.



the size of every intra-module relation, appears to be violated by the structure of
an empirical knowledge pattern. We conjecture that the modular architectures
of a knowledge pattern are better described by the conditions of hierarchic ag-
gregabilty that give rise to the design rules of compositional evolution [36], and
that the tendency of knowledge-pattern complicatedness to increase with scale
is kept under control through the development of flexible modular architectures
of this type.

Still, Simon’s idea of identifying functional or structural subset of a net-
work, by separating first-order from lower-order magnitude links proves to be
euristically insightful in the analysis of an empirical knowledge pattern. As will
be shown, proceeding in this way enebles the identification of functional and
structural units that define the strongest systematic and self sustaining mecha-
nisms of knowledge transfer and accumulation within the network. These ’core’
structures are defined by the connectivity property that every node (technology
field) in the core is connected to every other node in the same core by a circular
self-sustaining information flow. The core structure achieving the highest rate
of knowledge transfer is dominant. In the approximation based on first-order
magnitude links the dominant core structure will be typically a strict subset of
the network. Other, non dominant cores will also coexist with it. We expect
that in an empirical knowledge pattern the dominant core identified through
1st order size connections corresponds to the functional module of technology
fields and knowledge interfaces that together identify the dominant technology
paradigm of the period. As will turn out, the prediction is fully corroborated in
the empirical analysis to follow.

The relevance of this approach in the analysis of knowledge transfer between
technology fields is further motivated in a companion paper [3] which offers a
theoretical model of the way a given knowledge pattern affects the distribution of
incremantal innovations. In that paper, the qualitative model predictions were
then matched with facts, showing that changes in the structure of the empirical
knowledge pattern obtainable from patent-citation data could provide a clue to
explaining changes in the empirical distribution of innovations. The architecture
of the empirical knowledge pattern per se was largely unexplored, partly as a
result of the relatively high level of aggregation at which the empirical analysis
was carried out (technology fields were identified with two digits technological
subcategories as defined in [11]). This paper extends the analysis of [3] in two
directions. In the first place, the architecture of the empirical knowledge pattern
based on USPTO patent citation data is investigated at the much finer level of
resolution of 3-digits technology classes. Based on this fine grained analysis,
the issues concerning the relevant notion of modularity, the core structures and
their functionality with respect to patent distribution, can be addressed more
rigorously. In the second place, the changes through time in the cross-field
architecture of knowledge transfer are investigated at the same finer level of
resolution. The envisaged structural change in the period 1975-1999 offers a few
guide lines of interpretation consistent with the idea that the information and
communication technologies (ICT), although representing the core of knowledge
creation throughout the period, only in the second half became fully integrated



with the other sectors. The suggested guidelines are broadly consistent with
general ideas on structural change suggested in the evolutionary applied and
theoretical literature on knowledge creation.

The paper is organized as follows. In the next section we introduce our formal
description of a knowlegde pattern and the precise notions of modularity, near-
decomposability, and core structures that will be used in the rest of the paper.
Section 3 relates our reconstruction of an empirical knowledge pattern from
the NBER files of patent-citation data to the growing literature on knowledge
spillovers based on patent citations. Section 4 exploits the notions of modularity
and ACS to analyze the architecture of the re-constructed empirical knowledge
pattern in the periods 1975-1986 and 1987-1999. Section 5 concludes.

2 Knowledge pattern, modularity and autocat-
alytic sets

2.1 The connection matrix ('

We consider an economy with a finite set S = {1,..., n} of known technology
fields. A field j is here understood as a (possibly infinite) set 7} of potential
configurations, or designs. The technological state of the economy is defined
by {G(S,L,C),A}. A; i =1,...,n, is the number of useful ideas cumulatively
produced by R&D in field i. G(S, L, C) is a weighted directed graph, with a set
S of nodes, that are here interpreted as technology fields, a set L of directed
knowledge links between these nodes, and a connection matrix C' of weights,
or intensity coefficients, attached to the links in question. c¢;; is the strength
of the directed link from j to i¢. It is a measure of the extent to which ideas
developed in sector j are relevant to R&D in sector ¢, in the sense that A;
expands the knowledge base of the latter.? We can safely assume that some of
the knowledge produced by past innovations in one field is always relevant to
R&D activity in the same field, that is, ¢;; > 0, ¢ = 1,...,n. By definition, C'
satisfies the condition: ¢;; = 0 if and only if the directed link (j — ¢) ¢ L. This
justifies the definition:

Definition 1 G(S, L) is the unweighted directed graph associated with the weighted
directed graph G(S,L,C), or, more sinthetically, with C.

The discovery which brings j in the set S of known technologies, brings also
the knowledge stock A; to its lower bound A; = 1; after that, A; grows as a
result of the cumulative flow of incremental-innovation arrivals in the technology
field j. Let a; = A;/>_; A;. [3] builds a dynamics of the column vector a of share
distributions a;,7 = 1, ..., n, driven by the flows of knowledge inputs across fields.
The flow of useful innovations in sector ¢ depends on two factors, the effective

2In our interpretation, c;j = 1 if every idea developed in field j is a relevant knowledge
input to R&D activity aimed at developing a new idea in field ¢. Since ideas are non rival, it
may well be the case that c;; > 1.



R&D effort in this field, Q;/A;, and the repertoire of available ideas that are the
‘building blocks’ of R&D in field 4; this repertoire corresponds to the knowledge
flows >, ¢;jA; received by i through the active interfaces described by C'. The
stock A;, j = 1,...n, evolves according to the differential equation:

; Qi
A= e Zj CijA; 1)

where o is a uniform productivity® parameter. It can be redily verified that
in the long-run condition such that the effective R&D effort @Q;/A; is uniform
across fields, every right eigenvector of C' is a dynamic equilibrium of the dif-
ferential equation above. Under the hypothesis that relative R&D effort in field
i, Qi/ Y ; Qi, increases (decreases) depending on the extent in which innova-
tion opportunities in this field, >, ¢;;A; is higher (lower) than average, it is
proved* that the dynamics of a converges to a fixed point a* which is the right
eigenvector of C' associated with the Perron-Frobenius eigenvalue \*. (Using
a genericity argument, A* is assumed to have multiplicity 1). The suggested
interpretation is that A\* is the highest long-term sustainable rate at which the
connection matrix C' makes knowledge inputs avilable to the technology fields
which enter the non negative (right) eigenvector of C' associated to A*. The
suggested interpretation is that the positive entries in this eigenvector define
the fields participating in the dominant technology paradigm. For the sake of
completeness, the model dynamics is reported in appendix A.

2.2 Modularity of C

In our matrix C, the degree of activation c¢;; of the knowledge transfer from
field j to field ¢ is a measure of the probability that an idea discovered in field
j is relevant to the discovery of a new idea in field i, if exploited by R&D
in this field. We may note, in passing, that the same idea discovered in one
field, may be relevant to many other fields; hence, there is no implication that
the elements in the columns of C' add up to 1. For the sake of simplicity, we
think of relevance as a binary variable which may take value 0, not relevant,
or 1, relevant. Under the above interpretation, the exploitation by field i of a
relevant input idea discovered in field j requires meeting the constraints carried
by such input. A relatively high (low) value of ¢;; is also an indication that the
landscape of field i is tightly (weakly) coupled to that of field j; the present
directions of useful discovery in the former are strongly (weakly) conditioned by
the direction in which the configuration of useful ideas has been developing in
the latter.

Mutually high values of ¢;; and c;; signal a coevolution of the directions of
discovery in fields ¢ and j. The constraints imposed by such a coevolution bring

3The simplifying assumption follows from the fact that there is no attempt at weighing the
quality of a knowledge transfer, but at measuring its frequency together with its source and
destination.

4The proof is given in [3] for low dimensional n. By way of simulations, the result is
conjectured to hold for any given n.



in a trade-off. The price to pay for the oppotunity of a faster progress through
the formation of compatible knowledge standards in fields ¢ and j, and the
opening of active interfaces between them, is a reduced capability to move away
from the direction specified by those standards. This creates the danger of a
technological lock in, because trajectories traced by local search procedures are
path dependent. Moreover, if global search criteria should occasionally benefit
from a lucky stroke and envisage new and potentially useful search directions,
R&D in these directions can not avail itself of the vast array of knowledge inputs
and complementary ideas that are maide available by the cross-field interfaces
corresponding to the prevailing knowledge pattern. For this reason, the idea
occasionally discovered through a first research step in a radically new direc-
tion is likely to perform poorly as compared to the best-practice disciplinary
knowledge. The transition to a different dominant pattern may prove difficult.

It is worth stressing that under our interpretation, the search ’complicat-
edness’ faced by R&D in field ¢ is not linearly additive in the parameters c;;
composing the ith row of C' . The reason is that the constraints imposed by the
exploitation of knowledge spillovers from a given field A conform to the set of
dominant designs prevailing in h. Exploitation of spillovers from a larger num-
ber of diverse fields requires compliance to a wider set of qualitatively different
constraints. The complexity of the search space facing R&D in field ¢ comes
to depend not only on the total sum Zj ¢ij , but, more importantly, on the

Cij

distribution{z —i=1,.., n] and on the technological diversity between the
ci;

fields from which field i draws its knowledge inputs. Ceteris paribus, R&D re-
ceiving its knowledge inputs from a smaller number of qualitatively more similar
technology fields is expected to face a less complicated search space.

The observation above identifies a strong incentive for field ¢ to concentrate
the incoming knowledge links of total intensity > j Cij ACross a restricted number
of technologically similar source fields. In other words, we expect a selection
for modularity in the structure of C'. Intuitively, the set of n fields can be
partioned into m < n disjoint groups, such that , on average, and in ways that
will be specified below, the within group links are stronger than the between
group links. It is also worth observing that the argument can be replicated at
different hierachic levels; but to the extent that there is qualitative variation
in the nature of technological constraints, activities and functions at different
levels of the hierarchy, there is no direct implication that the organization of
knowledge patterns is necessarily self-similar across modules and at every scale
of resolution.

2.3 Modularity and dynamics: near-decomposition, ag-
gregation and core structures

The above intuitive and quite genaral idea of modularity of the connection
matrix C' admits a quantitative expression, based on recent contributions in
network theory and applications. Suppose that the set N = {1,...,n} of tech-
nology fields is partitioned into m disjoint subsets, or groups, so that N =



Ny UN2U... U Ni, where Nyis the set of fields belonging to group h. The to-
tal intensity of an outword link from group h directed to itself or to other grpups
isap =73, Z Cij,j € Np,i =1,...,n. The corresponding total intensity of an
inword link to gruop h from 1tse1f or from other groups is @, = ). >, ¢ij,1 €
Np,j = 1,...,n. If the total intensity of links in C'is T" = }_, i Cij 1] =

1,...,n, then the average relative frequency with which an outword link in C
originates from, and arrives to, group h is é, = % and é, = %, respectively.
The modularity measure @y of the links from and to gruop h in the context of
the given network C, is then expressed by the extent in which the frequency
of within-group links exceeds the frequency which would be expected from the

hypothesis of a random wiring.

Z Z Cij —éhéh (2)

i€ENp, JEN,

The modularity of C according to the partition { Ny, ..., N, }is then expressed by
the sum @ =), Qrand the appropriateness of two alternative partitions of N
is evaluated by choosing the partition yielding a higher value of ). In this spirit,
the modularity of C' is defined by selecting the Q-maximizing partition ([21]).
Since the @ modularity of the null partition {N} is zero, the ) modularity of
C takes values in the interval [0, 1].

The situation is illustrated by the following example of a connection matrix
showing the mutual links between n = 8 fields. Symbols ¢ of different size
represent links of different order of magnitude. The set of fields {1, ...,8} can be
partitioned into two modules N, = {1,...,4} and N, = {5, ..., 8}, such that the
strength of the links between N, and N, is at least one order of magnitude.lower
than the strength of the within module links. Each module N, and N, can be
further partitioned into two sub-modules N1, Ngo and Nyq, Npa, with the same
property that the strength of the links between sub-modules is at least one order
of magnitude lower than the strength of the links within sub-modules.
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The @-modularity of the above connection matrix C'is clearly maximized by
the partition {Ng1, Nu2, Np1, Npo} of N. Long ago Simon and Ando observed
that if a square non negative matrix like C' in the example describes the equa-
tions of motion of a (locally) linear dinamical system of n variables (X7, ..., X},)



of the form?®

X, = CX, 3)
and if the ratio
c
is sufficiently close to zero, the linear operator C' is decomposable into the form
C=C"+¢eD

where C* is block diagonal, with the diagonal operators C7,, Cy,, Cyy, Cy, acting

on the components of X; corresponding to the partition {Ng1, Na2, Np1, Npa2 },
respectively. Simon and Ando provided the conditions for which the time scale
of the dinamical system is approximately decomposable into a ’short-run’ t < Tj,
a ‘'medium run’ Ty < t < 71, and a ’long run’ ¢t > T7. During the short run, the
dynamical behavior is dominated by the diagonal block operators acting on the
relevant components of x;, that is, it is almost completely determined by the
within partition relations. During this interval the dinamical system is nearly
decomposable, but is not aggregable, because the within-partition components
of X, namely X1+, Xqa2,t, Xp1,¢, Xp2,t have not yet completed their convergence
to the dominant eigenvectors a},, a;s, a7, a;, of the diagonal block operators.
This convergence marks the inception of the medium run. During this interval
the within partition dynamics approximated by C* still dominates, so the system
is still decomposable, but to the extent that the within partition distributions
are closely approximated by a’,,a’,,a};, ajy, the system is also aggregable. In
the long run, the between partition relations become relevant and for this reason
C* does not offer a good approximation of the dynamics any longer. During
this interval the changes in X; induced by the between partition relations are
weighted by the equilibria of the within-partition distributions. For this reason
the system is still aggregable, even though it is no longer decomposable.

The argument above shows that the conditions for the decomposition and
aggregation of variables acted upon by a linear operator do not in general over-
lap, and have to be clearly distinguished. To clarify this point, which plays an
important role in the sequel, it is worth considering an example concerning the
dynamics induced by 3 on the share distribution variables:

S Xit
it — n
Zi=1 Xit
n n
jji = E Ci]ﬂ?j — X; E C]C]ﬂ?j (4)
j=1 jk=1

In this example the operator C lends itself to a form of aggregation, even though
the conditions for decomposability fail.

iy cjy O 0
0

C=c'4ep=| 2 0 0 @) p
;o 0 33 0
0 0 0 ¢y

5[33] refers to the corresponding 1st order difference equation.



Here D and C* are n X n non negative matrices, n = 4 and ¢ is ’sufficiently
small’. The short run dynamics of the relative share distributions of (1, .., Z4,)
converges to the share distribution of the right eigenvector of C* associated to
its dominant eigenvalue \*. the aggregation referred to above is induced by
the dominant eigenvector properties of C*. For the sake of later reference we
introduce the following definitions and remark.

Definition 2 For the graph G(S,L) associated to a connection matriz C, a
autocatalytic set (ACS) is a subgraph of G(S,L) such that each vertex in the
subgraph has at least one incoming link from some vertex of the subgraph (Jain
and Krishna [14]). Notice that our assumption c; > 0, i = 1,...,n, implies
that G(S, L) has n trivial ACSs. The dominant ACS of G(S, L) is its largest
subgraph with the property that the associated connection matriz C, satisfies

A(C) = M\ (C).

Definition 3 For the dominant eigenvector a* of the connection matrix C' in
the weighted directed graph G(S, L, C), consider the subset S, C S of the vertices
corresponding to the positive components of a*, together with the subset L, C L
of the links between them. G(Sq, Ly) is the subgraph corresponding to a* of the
unweighted directed graph G(S, L) associated to G(S, L,C).

Remark 4 G(S,, L,) is the dominant ACS of G(S,L).

With the tools above we can now look at the graph G(S*, L*) induced by
C*. G(S*, L") is itself a ACS, because node 4 sends a link to itself, but provided
that cy4 is sufficiently small, node 4 does not belong to the dominant ACS of
G(S*, L*), which consists of the nodes 1, 2, 3 and the links between them. The
reason is that node 4 does not receive links from the others; as a result, to the
extent that cyy is strictly lower than the dominant eigenvalue of C*, the fourth
component in the dominant eigenvector of C* is zero.

In the dominant ACS of G(S*,L*), and in every ACS more generally, we
distinguish a ’core’ and a ’periphery’. The core subgraph of the ACS, which in
our example is formed by vertices 1 and 2, and by the links between them, has
the defining property that starting from any vertex of the core, any other vertex
of the autocatalytic set can be reached following a sequence of directed links.
This defining property of the core is labelled closed path connectivity. Vertices
in the autocatalytic set that do not belong to its core, belong to its periphery.
In our example the periphery of G(S*, L*) consists of vertex 3, together with
the link from vertex 3 to itself.
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The form of aggregation enabled by the dominant eigenvector propereties
of C*is now revealed by the fact that the relative size (x1/x2) of the variables
1 and 2 in the core of the dominant ACS is independent of the measure of
connections c;; outside the core. In this sense, and in spite of the fact that
the system is not decomposable (in Simon’s sense), the variables z1, zo exert an
aggregate influence on the short-run convergence of variables outside the core.
Moreover, the aggregation dominating the short-run equilibria will be also, if
only approximately, felt in the long run, because ¢ is small.

The core of the dominant ACS of a knowledge pattern is the centre of the
strongest self-sustaining mechanisms of knowledge creation and transmission
within that pattern. In a relevant sense, the links connecting the core to the
other fields in the dominant ACS disseminate building blocks ([13]) that are
the aggregate outcome of the relations within the core. Mathemetically, this
corresponds ton the fact that the Perron-Frobenius eigenvalue of the dominant
ACS is affected by any quantitative change of a connection coefficient within
the core, independently of the wiring and intensity of the links from the core to
the periphery. Euristically, this form of aggregation reflects the combinatorial
view of knowledge creation adopted in this paper. A stronger link c¢;; signals
the increased capacity of the target field j to creatively recombine knowledge

11



from the source field ¢ with building blocks directly or indirectly received from
other fields. Such building blocks are of course the outcome of previous cre-
ative recombinations. The closed path connectivity of the core is crucial, in
this respect, in that it signals that the mechanisms in question are self sus-
taining. The Perron-Frobenius eigenvalue provides the aggregate measure of
self-sustainingness.

The only reason to avoid the tighter coupling of the fields in a knowledge
pattern through pervasive strong links is to avoid the corresponding growth in
complexity carried by the need to set the technology standards. in one field in
tune with those that are simultaneously evolving in other fields. The setting in
tune will be easier, if the first order-size links that give rise to the closed path
connectivity within C* are relatively few in number. The point here is that
the coordination between technology fields is more complicated if the relations
between them are not strictly hierarchical (one -way), but contemplate a multi-
plicity of feed-back loops. such loops are characterisctic of the relations within
the core, which are circular, with a multiplicity in the measure of closed path
connectivity, which tends to grow with the number of first order links within C.

We conjecture that the relatively low dimension of the (first-order) dominant
core facilitates the formation of well defined standards and smooth learning
interfaces within the core. The incentives for a low-dimensional dominant core
will be strongest during the early phase of design-standard formation within the
core, because in this phase the process of knowledge creation is more turbulent
([1], [4]). The diffusion of the aggregate knowledge produced by the core to
the periphery of the ACS is made less complex by the fact that the relations
between the core and the periphery are hierarchical. To this extent, we expect
that the ratio between the size of core and periphery is lower during the early
turbulent phase of design standard formation.

3 Reconstructing knowledge spillovers from patent-

citation data: a brief overview (missing)

4 The pattern of knowledge flows and innova-
tion dynamics: 1975-1999

The data source for our exercise is the NBER Patent-Citations data file, as
made available in Jaffe and Trajtenberg [15]. The main data set PAT63 99
contains all utility patents® granted by the U.S. Patent and Trademark Office
(PTO) between January 1, 1963 and December 30, 1999. Among the variables
that the PTO originally assigns to each patent, most relevant for us, in addition

6Utility patents constitute the overwhelming majority of patents, which include, in ad-
dition, design, reissue and plant patents. Cfr. Hall, Jaffe and Trajtenberg [11, p. 407, n.
4].
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to the grant year, is the main U.S. patent class.” There were 417 patent classes
in the classification in use in 1999. The ‘original’ variables assigned by the PTO
to the various patents are enriched by the authors of the dataset with a number
of ‘constructed variables’. In particular, the 417 classes are aggregated by the
authors into 36 technological subcategories and these further aggregated into
6 categories (‘Chemical’, ‘Computers & Communications’, ‘Drugs & Medical’,
‘Electrical & Electronic’, ‘Mechanical’, and ‘Others’). The data set PAT63_ 99
can be profitably matched with a second data set, namely, CITE75 99, which
contains all citations made to patents in PAT63 99 by patents issued between
January 1, 1975 and December 30, 1999.

The first aim of our exercise is to obtain from the citations data just de-
scribed, a computationally viable description of the knowledge flows between
technology fields, and of the changes thereof. In the companion paper [3] the
analysis was carried out resorting to a simplified description of technology fields
according to their partition into 36 subcategories. This paper extends the analy-
sis to the technological classification according to the 418 3-digit classes. To
evaluate the intensity of knowledge spillovers across technology fields, we stud-
ied how far patenting in a class zy in a time interval [t,t + z] was followed
by citations to xzy by patents issued in every other class in the time interval
[t+s,t+z]. In this way, for each class zy, we obtained a 418-dimensional vector
of citations to xy. The corresponding vector of spillover intensity from xy to
the other classes was obtained by dividing the citations vector by the number of
patents issued in zy in the period [t,t 4 z]. Proceeding in this way for each zy
in the set of 418 classes, we arrived at a matrix of spillover intensity which is the
empirical analogue of the matrix C' in our model. To detect structural change, if
any, in the pattern of knowledge spillovers in the period under study, we divided
the latter into two sub-periods and obtained a corresponding analogue of matrix
C for each sub-period.

The actual procedure followed was complicated by two types of considera-
tions that have to do with those characteristics of the available data set, that
are most relevant to our exercise.

The first relevant characteristic is that the number of citations in a finite time
interval is affected by truncation effects related to backward and forward citation
lags (Hall, Jaffe and Trajtenberg [11, pp. 421-424]). This imposed a choice of
the subperiods in a way that comparisons between them were least affected by
the unavoidable distortions introduced by truncation effects. In particular, the
parameter s was held constant between the subperiods (s = 12) and differences
in z were negligible (z = 23 in the first subperiod, z = 24, in the second).
The corresponding choices for ¢ were ¢ = 1963 and t = 1975, respectively.
For the sake of later reference, the intervals [t + s,t + z] = [1975 — 1986] and

"The reason for the qualification ‘main’ is that each patent is assigned by the PTO to a
3-digit patent class and to a subclass, but also to any number of ‘subsidiary’ classes and sub-
classes that seem appropriate. Moreover, the system is continuously updated with new classes
being added and others being reclassified or discarded. In this case, the PTO retroactively
assigns patents to patent classes, according to the most recent clasification system. Cfr. Hall,
Jaffe and Trajtenberg [11, p. 415.]
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[t 4+ s,t 4+ 2] = [1987 — 1999] are referred to below as first window (W1) and
second window (W2), respectively.

The second relevant characteristic is that there is a sharp rising trend, largely
common across categories, in the mean number of citations, per patent. This
trend reflects, to a large extent, an increasing propensity to cite by PTO of-
ficers, as a result of the easier access to larger data sources brought about by
computerisation of the PTO during the 1980’s. Although the rising citations
trend may not be entirely a pure artifact of the changed PTO practices, in the
absence of a better alternative, the construction of the connection matrix for
the second window was carried out using discounted citations data. In partic-
ular, the number of citations made by patents issued in class xy in the second
window, was discounted by the xy growth rate of citations-made per patent
between the first and second window.

There is a third potentially distorting characteristic in the data set, namely,
the rising trend in the yearly number of patents issued since 1983. This feature
is at least partly taken care of by our procedure, since according to our estimate
of the connection matrix, the number of citations made by class xzy patents,
issued in window [t + s,t + z], to class hk patents issued in [¢,t + 2], is divided
by the number of hk patents granted in [¢,t + z].

4.1 Modularity of empirical connection matrices

Fig. 7?7 and 7?7, report a visual representation of the connection matrices C'(W1)
and C(W2) for the two windows. The colours identify different orders of mag-
nitude of the connection coefficients.

The bright colour blocks and stripes depicted in Fig. 1 and 2 is partly re-
vealing. For instance, the red main diagonal results from the fact every class
tends to be more tightly connected with itself than with other classes; the same
should apply to 'well chosen groups’ of technology classes. The problem revealed
by Fig. 1 and 2 is that the ordering of rows and columns is not particularly well
chosen; it simply reflects the NBER original ordering of 3-digit classes, which is
strongly influenced by temporal sequence in which the classes were first intro-
duced. As a result, these figures do not offer an adequate visual representation
of the quasi-modular structureof the two matrices. A far better candidate in this
respect appears to be an endogenous permutation of the ordering that groups
together of the classes showing a similar structural relationship with the other
classes. To this end, we generated for each period a 32 groups partition of the
418 classes, and a corresponding permutation of C', using the algorithm CON-
COR. The effects on the visual representation of connection strengths and their
quasi-modular organization is quite sharp.

Table 7?7 and 77 specify the class composition of the CONCOR groups for
the windows W1 and W2. The colours emphasise the correspondence between
the endogenously generated groups and the NBER technological categories. For
ease of later reference, and for reasons that will be clarified in the sequel, group
28 in Table 7?7 and group 1 in Table 7?7 are referred to as the ’Core-Groups’ for
the periods W1 and W2, respectively.
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Figure 1: Average citation flows of 1 patent issued in a column technology-class,
by patents issued in the row technology-class: 1975-1986. Representation based the
NBER ordering of 418 3-digit classes. The colour sequence blue, light-blue, light green,
yellow, red identifies progressively higher orders of magnitude of link intensity.
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Figure 2: Average citation flows of 1 patent issued in a column technology-class,
by patents issued in the row technology-class: 1987-1999. Representation based on
the NBER ordering of 418 3-digit classes. Correspondence between colour and link
intensity as specified in 1.
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Figure 3: Average citation flows of 1 patent issued in a column technology class,
by patents issued in the row technology-class: 1975-1986. Representation based the
permutation of C'(W1) generated by the algorithm CONCOR. Colours identify link

intensity as in Fig. 1.
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1857 - 58

Figure 4: Average citation flows of 1 patent issued in a column technology class,
by patents issued in the row technology-class: 1975-1986. Representation based the
permutation of C'(WW1) generated by the algorithm CONCOR. Colours identify link
intensity as in Fig. 1
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Figure 5: Partition of the set of 3-digits classes into 32 structurally ’similar’
groups performed by the algorithm CONCOR on the connection matrix C'(W1):
groups 1-13. Blue = Computer and communic., Green = Mechanical, Pink =
Chemical, Red = Drugs and medical, Yellow = Electrical and electronics, White
= Others.
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Newman and Girivan [21] propose that the appropriateness of any two
community-structure partitions of a given network are evaluated using their
proposed measure of modularity (. This suggests that the the 32-blocks en-
dogenous partition generated by CONCOR identifies a community structure
moderately better than the NBER technological partition in 36 subcategories®.
In period W1 the Newman-Girivan @ measure of modularity ([20], [18]) mod-
erately increases for the former (Q = 670135), with respect to the latter (Q =
647874). The corresponding increase of the  measure is lower for period
W2.(Q = 614495 against Q = 610734). The first point to observe is that,
irrespective of the community structure adopted, the aggregate ) measure of
modularity declines from the period 1975-1986 to the period 1987-1999.

The group-contributions to modularity, weighted and unweighted by the
number of group members, is reported in Table 9. What is most relevant in
this table (recall that the group composition changes from W1 to W2) is that
in both periods the maximum per-class contribution to modularity comes from
the blue coloured ’Core Group’ comprising (almost?) exclusively classes in the
Computer and communications technological category.

Correspondingly, in the list of the contributions to modularity induced by
the exogenous partition of classes into 36 subcategories (Table 10) the blue
coloured Computer and communications subcategories rank very high!?.

The analysis above, suggests that the technology classes in the Computer
and communication technological subcategories, and even more the ICT (Infor-
mation and communication technology) classes belonging to the *Core Group’
are not only most active in R&D, but receive and send a much higher than
average share of their citations from and to classes belonging to the same sub-
category or group. Apparently this conclusion marks a sharp contrast with the
finding in [11], based on the Herfindahl concentration of the class distributions
of patent citations made (input) and received (output). Hall, Jaffe and Trajten-
berg [11] find that, on average, and throughout the period 1975-1999, patents
in the Computer and communications category, have the lowest concentration
indexes of the input and output patent citations by class. On this account, they
argue that patents in Computer and communications are most ’original’ because
they creatively exploit knowledge from a wider set of technology classes, and
produce also the most ’general’ knowledge, because knowledge created by them
disseminates to a wider set of classes According to [11],the highest generality
score makes the label ’general purpose technologies’ most appropriate for the
classes belonging to the Computer and communications category.

The solution to the apparent paradox is that the modularity measures con-
sidered in this paper are based on the grouping together of classes into ’similar’
technological communities. The fact that the ICT classes exhibit a relatively
high modularity measure, based on this partition, does not contradict the fur-

81t may be worth observing that this partition gives rise to a class ordering which is not
the NBER ’historical’ ordering embedded in Fig. 1.

9The qualification in parenthesis refers to the period 1987-1999.

10The correspondence between colour and technological category is reported in previous
tables.
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Modularity: class partition by structural similarity

1975-1986
Block Q[i)
1 0015216
2 0026971
3 0055041
4 0,026505
5 0,039%486
6 0,019552
7 0,011B16
8 0,012821
9 0,022328
10 0,03595
11 0,030036
12 0,033801
13 0,035748
14 0,024742
15 0,025293
16 0,023255
17 0,021061
18 0,016614
19 0,00BG9T7
20 0,018281
21 0,0034015
22 0,0023B23
23 0,0094076
24 0,011247
25 0,012458
26 0,017534
27 0,0160B6
28 0,041107
29 0,017668
30 0,02227
31 0007173
32 0,0057265
Total 0,6T0135

1008(i)/n(i)
0,0849731
0,1004123
0,141B65
0,1044819
0,1163879
0,1455631
0,0B79813
0,12274
0,106B769
0,0B60405
0,095B4B4
0,0838934
0,0BB7259
0,0975322
0,0736944
0,0973999
0,1176143
0,1391703
0,072B52
0,1020895
0,0759821
0,0532154
0,1050727
0,1256168
0,1192649
0,1175015
0,1197754
0,2119018
0,169142
0,1356719
0,0B01146
0,1279176
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0,067554
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0,0991511
0,0771942
0,0731625

Figure 9: Group contributions to modularity, unweighted and weighted by group
size, based on the two different community structures identified by CONCOR
for the periods 1975-1986 and 1987-1999.
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Modularity: class partition by subecategory

1975-19EB6 1987-1999
subcat. Qi) Qli)

11 0,012064 0,00B3618
12 0,011066 0,009B523
13 0,020171 0,016662
14 0,011017 0,00GB5EB
15 0,023214 0,01B136
19 0,020158 0,016958
21 0,020131 0,022677F
22 0,027234 0,031
23 0,026664 0,023277F
248 0,020B47 0,023604
0,012689 0,012595

0,030077 0,03077
0,016459 0,015226

0,020641 0,016632

41 0,0144B6 0,01609
a2 0,015028 0,017048B
43 0,015384 0,014143
44 0,01 641 0,014B61
45 o0,01B8402 0,017237
46 0,028925 0,030943
49 0,015925 0,015967
51 0,015154 0,013566
52 0,013972 0,011623
53 0,020369 0,017744
54 0,02023 0,018484
55 0,01539 0,015657
59 0,01298B5 0,013B803
61 0,01739 0,015989
62 0,016927 0,017526
63 0,015216 0,018982
64 0,023013 0,01BBO0S
65 0,014B843 0,015793
66 0,019905 0,013316
6T 0,014378 0,012687
68 0,016992 0,018203
69 0,014118B 25 0,013657
Total 0,647BT4 0,6107339

Figure 10: Group contributions to modularity according to the NBER partition

of 418 3-digit classses into 36 2-digits subcategories.



ther fact that they also rank lowest in the Herfindhal concentration index based
on the class distribution (of inward and outward citations). It simply means
that a relatively large share in the 'wider sets of technology classes’ sending
knowledge connections to and receiving knowledge connections from the ICT
classes, belong in the same technology group or subcategory. The qualifica-
tion by Hall, Jaffe and Trajtenberg [11] of the ICT classes as ’general purpose
technologies’ is therefore inappropriate, if it is simply based on their finding
concerning the Herfindahl index. To corroborate this conclusion, we must spel
the doubt that the apparent clash between our modularity measures and the
cited results of [11] may have to with the fact that the former, unlike the latter,
are based on the connection matrices C(W1) and C(W2) in which each column
distribution of the citations receaved by one class is normalized by the number of
patents issued in that class in the corresponding period. To this end, we report
below the Herfindahl concentration indexes concerning the distribution of the
absolute number of inward and outward citations, by group and subcategory,
for the periods W1 (Table ?7?7) and W2 (Table ??). The findings corroborate
our modularity result, confirming that the Computer and communications sub-
category, and most prominently, the ’'Core Group’ rank relatively high in the
ordering of concentration indezxes.

Our findings do not necessarily contradict the idea that the new knowledge
embodied in ICT innovations was 'general purpose’ and, as such, could be ex-
ploited in a wide set of diverse technology classes. The corroboration of this
idea can not simply rest on concentration indexes of citation distributions by
class. As will be shown, it requires a much more elaborate analysis of some
structural properties of the connection matrices, focused on the notions of near-
decomposability, and autocatalytic sets.

It is to this analysis that we now turn.

4.2 Near decomposability and the Core properties of ICT

The partitions of the connection matrices C(W1) and C(W2) into blocks per-
formed by CONCOR (see Fig.s 5 - 8) share the property that, in both W1 and
W2, the technological community, or group, exhibiting the highest @ modular-
ity measure is composed (almost) exclusively by ICT classes. It is now time to
justify the claim that each of the two communities thus identified represents the
"Core group’ (CG) in the partition for the period W1 and W2, respectively, and
to discuss the relevance of this claim.

The first step in the argument is to see to what extent each CG represents
a module in the sense of Simon [32], that is, in the sense that the size of the
connection links between the classes within the group are at least one order of
magnitude larger than those sent to, or receaved from, the classes that do not
belong in the group. To this end, we produced two dichotomized connection
matrices Cy(W1), C4(W2) with the defining property that all connection links
of the original matrix C(W7i),i = 1,2, that are larger than or equal to 0.1 are
set equal to 1 and all the others are set to 0. The exercise shows that in both
W1 and W2, the CG is connected by first-order-magnitude links with classes
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Figure 11: Normalized Herfindahl concentration indexes concerning the dis-
tributions of patent citations made (input distribution) and received (output
distribution) by each group in the 32 and 36 group partitions for the period

1975-1986.
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H* on unweighted 32x32 matrix H* on 36x36 unweighted matrix

block input distr. output distr. subcategoryinput distr. output disti
1 0,55178 0,62112 11 017672 0,17323
2 0,45852 0,45803 12 0,17233 0,16366
3 0,45585 0,365358 13 0,37532 0,32554
4 0,40006 0,42525 14 0,334894 0,25755
5 047073 0,443285 15 0,41147 0,40042
6 0,50928 0,52245 19 0,42455 0,41 261
T 0,52574 0,54 867 21 0,50328 045815
B 0,44505 0,4655 22 0,38226 0,55381
9 0,4388 0,44783 23 0,29912 0,36955
10 0,41861 0,43837 24 0,50524 0,4704
11 044019 0,43809 0,40314 047732
12 0,54338 0,553687 00,6095 0,61165
13 0,49401 0,48727 0,32431 0,47084
14 0,54077 0,44595 0,43435 0,39762
15 0,30394 0,26059 41 0,43571 0,366686
16 0,37925 0,405658 42 0,50844 0,45073
17 0,31749 0,34243 43 0,35253 0,32019
18 0,50404 0,48005 44 0,33316 0,31 685
19 0,50726 0,5056 45 0,39287 0,362683
20 044991 0,47037 46 0,4524 0,6228
21 0,40343 0,35045 49 0,33032 0,26123
22 0,32057 0,34701 51 0,37365 0,33523
23 0,42794 0,36886 52 0,26814 0,30873
24 04514 0,3756 53 0,51518 0,52843
25 0,36602 0,35246 54 0,43445 047727
26 0,47451 0,43047 55 0,49357 0,46358
27 0,5949 0,60761 59 0,3B952 0,32653
2B 0,36655 0,42523 61 0,50637 0,521659
29 0,34918 0,30634 62 0,60722 0,56737
30 038227 0,43734 63 0,53646 0, 50044
31 0,4445 0,42645 64 0,45248 0,56134
32 031926 0,2645 65 0,46961 0,46472
66 0,4208 0,36367
67 0,34455 025277
28 6B 0,46853 0,407 659
69 0,31504 0,32433

Figure 12: Normalized Herfindal concentration indexes concerning the distrib-
utions of patent citations made (input) and received (output) by each group in
the 32 and 36 partitions for the period 1987-1999.



that do not belong in the group; hence it does not meet the strong requirements
imposed by Simon’s definition of a module.

4.2.1 The dominant autocatalytic set of C4

Simon’s idea of separating first-oder-magnitude from lower-order magnitude
links brings to the fore interesting functional and structural properties of the
connection matrix C. It turns out that the dominant ACS of the dichotomized
connection matrix C'4 (WW1) has a Core consisting of 8 classes, all of which are in
the Computer and communication category, and all belonging to the CONCOR
community CG(W1), which drwas its name from this finding (see 13). They
are:

705 Data processing: financial, business practice, management, or cost/price
determination

707 Data processing: database and file management or data structures

709 Electrical computers and digital processing systems: multicomputer data
transferring

710 Electrical computers and digital data processing systems: input/output

711 Electrical computers and digital processing systems: memory

712 Electrical computers and digital processing systems: processing archi-
tectures and instruction processing (e.g., processors)

713 Electrical computers and digital processing systems: support

714 Error detection/correction and fault detection/recovery

Three out of the five classes in CG(W1), which do not belong to the core of
the dominant ACS(C4(W1)), belong to its periphery. They are:

365 Static information storage and retrieval

370 Multiplex communications

700 Data processing: generic control systems or specific applications.

Finally, the remaining two classes of CG(W1), namely, class 706 (artificial
intelligence) and 395, do not belong to the dominant ACS(C4(W1)), but send
first-order magnitude links to members of this set.

The set of nodes in the periphery of the dominant ACS(C4(W1)) consists
of 37 classes, 17 in the Computer & communications category, 15 in Electrical
& electronics, 3 in Others and 2 in Mechanical. Figure 77 offers a visual repre-
sentation of the link architecture of the dominant ACS(C4(W1)). The 8 blue
nodes of the core send first order magnitude links not only to nodes allined on a
one-way path, but also to 8 other loops of strongly connected components that
are core structures in smaller ACS embedded in the periphery of the dominant
ACS(C4(W1)) (4 components with 2 members, 2 with 4 members, 2 with 5
members).

The number of classes in the dominant ACS(C4(W2)) is not much larger
than the corresponding number in the dominant ACS(C4(W1)): 52 in the for-
mer against 45 in the latter. It is the relative composition of the dominant ACS
between core and periphery to change from period W1 to W2. The Core of
the dominant ACS(C'4(W2)) contains 42 member classes, of which 28 belong to
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Autocatalviic set of C(W2.A)

Core : 42 menmbers
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365 369 370375 379 380 382 386395 399400 455 475477 700
T01 702 705706 TOTTOS T09 T10T11 T127T13 Ti4

Poriphery: It nembers

29 7374 123 257 280 310 361 438 439

Figure 13: Core and Periphery of the Autocatalytic sets of the connection ma-
trices C(W1) and C(W2). Blue = Computer and Communications, Yellow =
Electrical and electronics, Green = Mechanical.
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Figure 14: Dominant ACS of the dichotomized matrix C4(W1). The blue and
red nodes correspond to core and periphery nodes, respectively.
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Figure 15: Dominant ACS of the dichotomized matrix C4(W2). The blue and
red nodes correspond to core and periphery nodes, respectively.

Computer & communications, 8 to Mechanical and 6 to Electrical & electron-
ics. The sharp absolute and relative increase in the number of core members
in the second period is illustrated in 13. The increase in core size and its more
differentiated composition by technological category signals a higher degree of
integration of the ITC dominant paradigm with the rest of the economy. A
much larger number of classes belonging to more heterogeneous technologies, is
participating beside the core ITC classes in the first-order size self-sustaining
mechanisms of knowledge creation and transmission in period W2 as compared
to W1. Figure 7?7 shows the changed structure of the dominant ACS (C4(W?2)).
Most loops of strong components previously embedded in the periphery of the
dominant ACS have now been included in the new expanded core. There are
only 10 nodes in the periphery, all belonging to the categories Mechanical and
Electrical & electronics; of them, 4 form a strongly connected component.
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Figure 16: Class composition of the 3 autocatalytic sets of the matrix C4(W1)
associated with the first 3 highest positive eigenvalues. Autocatalytic sets em-
bedded in dom ACS have not been considered. Classes with the asterisc are in
the core of the ACS.

4.3 Non dominant Autocatalytic sets of C'4

The directed networks corresponding to the dichotomized matrices C4(W1)
and C4(W2) embed two other prominent, but much smaller autocatalytic sets,
beside the dominant one. Their class composition in the first period is shown
in Figure 16, where they are labelled AC'S; and ACSj3, respectively. They
are associated to positive eigenvalues of the matrix Cy(W1), namely Ay =
4.29 and A3 = 2.88. The functional significance of the ACS concept in the
context of patent analysis is confirmed by the fact that, as was the case for
the dominant ACS, both ACS3(W1) and ACS3(W1) correspond to functional
groups of classes that lend themselves to a clear interpretation.

In particular, ACS5(W1) comprises 14 classes that bear a close relation with
the category Chemicals. With the possible sole exception of class 418 (Stock
material or miscellaneous articles), the 10 classes in the core of ACSy(W1)
either belong in this category, or identify processes that use plastics as their
material support.

ACS3(W1) is considerably smaller and refers to more specialized classes of
activity related to surgery, in the category Drugs & medicals. It may be worth
observing that AC'S3(1W1) and the dominant AC'S(C4(W1)) have one node of
their respective peripheries in common, namely the node corresponding to class
73 (Measuring and testing) in the category Electrical & electronics. Thus, not
even the concept of ACS identifies functional modules that fully correspond to
Simon’s definition of a module.

The two autocatalytic sets AC'Ss and ACS3 are also clearly detectable in
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the second period, that is, in the network corresponding to the dichotomized
matrix C4(W2). The expansion of first order magnitude links in the second
period is not circumscribed to the dominant ACS, but is a more general trend.
ACS5 expands from 14 to 20 members and marks a pronounced change in its
composition. 4 classes exit and 10 new classes enter the AC'Sy, mostly belonging
in the categories Chemicals and Electrical & electronics. The outcome is also a
change in the composition of the core, which in the second period consists of 9
classes, all of which in Chemicals, and only 4 of them already part of the core
in the first period.

The expansion of AC'S3 from the first period to the second is much sharper
than for the other autocatalytic sets. The number of members increases from 5
to 24 nodes, with new classes entering the core and the periphery, while no exits
occur. The expanded core now contains 6 classes, again highly specialized and
all related to the activity of surgery or fabrication of prosthesis. In spite of the
highly specialized core, all technological categories except Computer & commu-
nications are represented in this autocatalytic set in period W2. The member
nodes include classes in the semiconductor technology, in molecular biology, in
chemistery and in mechanical processes using plastics as material support. It is
also remarkable that the AC'S3(C4(W2)) shares with the ACS5(C4(W2)) 10
members of its perifery (belonging in the categories Chemicals, Electr. & elec-
tronics, Mechanicals and ’Others’) and that both the ACS2(C4(WW2)) and the
ACS3(C4(W2)) share 4 nodes with the dominant AC'S(C4(W2)), all of which
in Electrical & electronics. This finding strongly reinforces the conclusion that
autocatalytic sets are functional structures that do not correspond to modules
in Simon’s sense.

As it turns out, the approximation based on first-order-magnitude links,
standardized to weight size 1, detects structural properties of the empirical
connection matrix C(W) that do not lose their significance after all links of
every magnitude have been re-introduced and all links bear their proper weight.
From the weighted directed graph G(S,L,C), corresponding to the empirical
connection matrix C, we extract the subgraph G(S;, L;, C;) where S; is the set
of nodes (classes) in the AC'S; of the dichotomized matrix C4 defined above (the
dominant ACS is ACS1), L; C L is the subset of links connecting the nodes in
Si, and Cj; is the connection matrix specifying the intensity of the links in L;,
as reported in C'. Our model suggests that the relative degree of participation
of a subset S; of nodes (classes) to the long-term self sustaining mechanisms of
knowledge creation and transmission within C' can be evaluated by comparing
the Perron-Frobenius eigenvalue of the connection matrix C; of the subgraph
G(S;, L;, C;) with the dominant eigenvalue of C. The results of this analysis,
carried out for the periods W1 and W2 are as follows.

AN(C) N(CL) A(Cy) AN(Cy)
W1 3.5825 3.5603 2.5081 2.8827
W2 6.6492 6.6442 3.3182 3.4045
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Figure 17: Class composition of the 3 autocatalytic sets of the matrix C4(W2)
associated with the first 3 highest positive eigenvalues. Autocatalytic sets em-
bedded in dom ACS have not been considered. Classes with the asterisc are in
the core of the ACS.
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5 Conclusions: ICT fields, general purpose tech-
nology, modularity, and ACS

Since our narrative is focused on the role played by the ICT fields during the
period of analysis, it is worth summarising our findings in this perspective, and
bring them within a coherent framework.

A first order of considerations refers to structural features of the knowl-
edge transfer between technology fields that are common to the periods under
consideration, 1975-1986 and 1987-1999.

If the organization of the learning interfaces connecting technology fields is
regarded through the lenses of the Newman Girivan [21] @ measure of mod-
ularity, and if connection links of every size are considered, the organization
concerning the ICT fields reveals unquestionably a relatively high degree of
modularity. The statement must be interpreted in the sense that this technol-
ogy group shows a maximum, or at least relatively high, propensity to be more
tightly connected with itself than with other groups. As already observed, this
result is confirmed by the finding that the distributions by technology ’group’
(CONCOR generated group, or NBER subcategory) of inward and outward
patent citations shows a relatively high Herfindahl concentration index for the
ITC group compared to most of the others. In the light of these findings the
frequent statement that the ICT represent the prominent general purpose tech-
nologies of late 20th century needs qualification and re-interpretation.

Our suggested interpretation is based on a separation of knowledge links
according to their order of magnitude. By focusing on sufficiently strong links,
and abstarcting temporarily from the others, we show that in both periods 1975-
1986 and 1987-1999 a subset of ICT fields is a crucial part of a core sub-network
connected by a circular path of strong links that together build a self-sustaining
mechanism of knowledge transfer. The core structure pertaining to the critical
ICT fields is not unique in the network of first order magnitude links and in
period 1975-1986 it is not even the largest core structure with respect to the
number of classes in it. What is special about it is: (i) It obtains, among all
such structures, the highest rate of knowledge transfer, as evaluated through a
dominant eigenvalue measure. (ii) It reaches out, through first order links, the
by far largest periphery of technology classes, which together with the source
core build up the dominant ACS(C4) of the strong-links network. We empha-
size that the closed path connectivity of the core implies that the systematic and
persistent flow of knowledge transfer from the core of the dominant ACS(Cy) to
the periphery and to the network at large, through second order links, contains
a form of knowledge aggregation in the sense that the core fields participate in
that transfer in relatively fixed proportions. In our view, these functional char-
acteristics, as opposed to measures based on Herfindahl concentration indexes,
or  modularity, justufy the label of ’general purpose’ for the ICT in the period
75-99.

When we ask what technologies may be or may not be regarded as general
purpose in a given historical period, we are posing questions concerning the ab-
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solute pervasiveness of such technologies. The judgement cannot abstract from
the absolute overall intensity of the links connecting the technology in question
to the others. This is precisely what occurs when we measure, through the @
modularity, how community oriented is the organisation of a connection struc-
ture,independently of its overall intensity, or how concentrated is a distribution
of connections (by using Herfindahl indexes).

A second order of considerations refers to the detection and euristic inter-
pretation of structural change, if any, between the first and the second period.
Also in this respect our narrative is focused on the core ICT fields.

On average, between 1975-86 and 1987-99 we register a sharp and general
increase in the intensity of knowledge transfer across fields, in spite of the fact
that: (i) the number of citations in the second period was discounted in the at-
tept at eliminating distortions induced by the changed USPTO citing practices;
(ii) the connection matrices C(W1) and C(W2) report the number of citations
per unit of patent issued in the period. To some extent, the implied higher
information flows were more diffused and less community oriented in the second
period, as is suggested by a mild decline of the ) modularity measures from
W1 to W2. In this respect the ICT group, no matter if identified by the NBER,
classification criteria or through ’structural similarity’ criteria, simply follows
the general trend.

As before, a different picture is obtained by focusing on first-order magnitude
links. The number of nodes (classes) in the dominant ACS of the dichotomized
connection matrix C4 increases from 45 in period W1 to 52 in period W2, a
fact which is in line with the general trend referred to above. What is striking
is the change from W1 to W2 in the composition of the dominant ACS(C4)
between core and periphery. In 1975-99 the 8 core classes all belong to the
NBER category Computer & communications, and more specifically to Electri-
cal computers and digital processing systems, Data processing, and Error detec-
tion/correction. In 1987-99 the core contains 42 nodes, 28 of which in Computer
and communications, 8 in Mechanicals and 6 in Electrical and electronics. The
ratio between the size of core and perifery is reversed: % is 0.216 in
W1 and 4.2 in W2.We suggest that the increase in the relative size of the core,
compared to periphery, and its more differentiated composition by technological
category, signals a higher degree of integration of the ITC dominant paradigm
with the rest of the economy. This finding is prima facie consistent with a evo-
lutionary interpretation of design standard formation. During the early phase
of design standard formation technological change is more turbulent and there
is a marked trade off between the knowledge gains that can be obtained through
tighter links with R&D in other fields, on the one hand, and the increased com-
plexity of R&D, on the other. An excess of connectedness makes finding a ’fit’
solution or design on a ltechnological andscape more difficult, because landscape
are constantly deforming as a result of the fact that convergence to a stable tech-
nology standard is not yet complete and the solutions provisionally identified in
different fields may not be compatible. The nature of the trade off is drastically
altered in favour of connectedness, after a set of mutually compatible standards
has emerged. Now the relation between connectedness and landscape deforma-
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tion is much waker. Correspondingly, the incentives for a relatively large set of
strong mutual interactions, as we observe in the core of the dominant ACS(C )
is stronger.

6 Appendix A: a model of incremental innova-
tions

Aggregate R&D effort x = >, @; is not explained by the model. It is assumed
to grow at the exogenous exponential rate «v.The flow of useful innovations in
sector ¢ depends on two factors, the effective R&D effort in this field, Q;/A;,
and the repertoire of available ideas that are the ‘building blocks’ of R&D in
field 4; this repertoire corresponds to the knowledge flows > j ¢ij A; received by
i through the active interfaces described by C. The stock A4;, j = 1,...n, evolves
according to the differential equation:

A; = 0% XJ: cijAj = oQpi(A) (5)

where o is a parameter, p;(A) is the function Zj cijAj/A; with 0 < ¢;;. Some
points concerning expression (5) are worth stressing. The innovation flow de-
pends on the effective R&D effort @;/A; , rather than the absolute effort Q;, to
allow for the fact that a larger stock A; makes innovation in ¢ more complex,
hence more R&D intensive. For the sake of simplicity, the expression abstracts
from technological obsolescence, which can be introduced at a minor cost. ¢;; is
the generic element of the n x n matrix C. Replacing every c¢;; > 0 in C' with 1,
and leaving every zero element of C' unchanged, we obtain the adjacency matrix
C of the directed graph G(S, L).

The R&D effort of sector i, namely @);,changes according to the dynamic
equation:

. 1
Qi=|p pi—ﬁzj:pj +7| Qi (6)
Let a; = A;/ Zj A;, and r; = Q;/A;. Then

> CiiA; >0 ciag
A; a;

pi(A) = = fi(a) (7)

where a = (a1,...,a,)" and f(a) : K — R'}. Notice that a is so defined that
it belongs to the n — 1 dimensional simplex K in R"™, that is, 0 < a; < 1,
>_ja; = 1. Indeed, since A; > 1, a; will approach zero if and only if 3, A;
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goes to infinity with A; finite. From (5) and (6) we obtain:

di = O TZ‘E cijaj—aig Thg Chjaj (8)
J h J

b= |1t (e —or) i) = £ i@ 9)
h

The following notation is now introduced: for every row n-dimensional vector
of real variables (z1,a, ..., 2y ), the corresponding label z is the column vector
(x1,%2,...,2,) and X is the diagonal matrix with the elements x1,zo, ..., 2,
on its main diagonal; moreover, z is the n dimensional unit column-vector
(1,1,...,1). Now for the column vectors a = (a1, ....,an)', 7 = (11, ...,7) we
generate the corresponding diagonal matrices A, R. From the equations above
we obtain the system of non-linear differential equations:

a=oc[RCa—ar'Cal (10)
i = R[(pl = oR) f(a) +2 (v = £/ f(0))] (11)

Our primary goal in this section is to study the system dynamics and to
relate it to the topological structure of the matrix C.

Proposition 5 Let a* be the right eigenvector of C' associated with the Perron-
Frobenius eigenvalue \*. Using a genericity argument, we can safely assume
that \* has multiplicity 1 (Hirsch and Smale [12, pp. 153-157]). (a*,7*) is
a stationary state of equations (10)-(11), where r* is defined as follows. (i)
Ifa* >0, r* = (y/oX\")z. (i) If a* > 0, let n1 < m be the number of strictly
positive components of a*,and no = n—mnq.Since in this case C is reducible,there
exists a permutation matrix P such that:

/o Cll CV12
por=] @ o]

Here Cy1 is a [n1 X n1] non negative matriz, Caz is a [ny X ng] non negative
matriz, and X*(C) = X\*(C11) > N (Ca2).0n the simplifying assumption that
the right eigenvector of Caa associated with \*(Cag) is strictly positive, we can

write:
o pfi(a*) +7 = (p/n) (M A" +n2A"(C22))
¢ fila*)o
where, fi(a*) = X, if af > 0, and f;(a*) = N (Ca) if a} = 0. If the Perron-
Frobenius eigenvector of Cag is not strictly positive, we can define r; by iterating
the argument abowve.

(12)

Conjecture 6 For generic initial conditions (a,r) such that a is in the relative
interior of K, and r > 0, the dynamics of (10)-(11) converges to the fized point
(a*,7*) defined by the proposition above. On the generic assumption that \* has
multiplicity 1, (a*,r*) is the unique stable attractor of equations (10)-(11).
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The above conjecture is abundantly illustrated in the companion paper [3],

where (a*,r*) is proved to be locally stable in low dimensional cases and is
conjectured to preserve its local-stability properties in higher dimensions.
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